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Abstract

An increase in sensors on the battlefield produces an abundance of collected data that

overwhelms the processing capability of the DoD. Automated Visual Surveillance (AVS)

seeks to use machines to better exploit increased sensor data, such as by highlighting

anomalies. In this thesis, we apply AVS to overhead Full Motion Video (FMV). We seek

to automate the classification of soldiers in a simulated combat scenario into their agent

types. To this end, we use Multi-Dimensional Continuous Density Hidden Markov Models

(MOCDHMMs), a form of HMM which models a training dataset more precisely than

simple HMMs. MOCDHMMs are theoretically developed but thinly applied in literature.

We discover and correct three errors which occur in HMM algorithms when applied to

MOCDHMMs but not when applied to simple HMMs. We offer three fixes to the errors

and show analytically why they work. To show the fixes effective, we conduct experiments

on three datasets: two pilot experiment datasets and a simulated combat scenario dataset.

The modified MOCDHMM algorithm gives statistically significant improvement over the

standard MOCDHMM: 5% improvement in accuracy for the pilot datasets and 3% for

the combat scenario dataset. In addition, results suggest that increasing the number of

hidden states in an MOCDHMM classifier increases the separability of the classes but also

increases classifier bias. Furthermore, we find that classification based on tracked position

alone is possible and that MOCDHMM classifiers are highly resistant to noise in their

training data.
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MULTI-OBSERVATION CONTINUOUS DENSITY HIDDEN MARKOV MODELS

FOR ANOMALY DETECTION IN FULL MOTION VIDEO

I. Introduction and Motivation

Automated Visual Surveillance (AVS) and Full Motion Video (FMV) have the

potential to increase the effectiveness of human intelligence analysts. This chapter surveys

research in surveillance and intelligence gathering reporting that there is too much data for

complete human analysis [5–8, 29, 49]. The amount of intelligence data available grows

with technological advancement in sensors and intelligence platforms. Thus, the amount

of human resources required to analyze all such data is prohibitively high.

This chapter first discusses the strategic implications of FMV on the battlefield. The

chapter then details the problem FMV creates—that there is too much for detailed human

analysis. Following that, the chapter discusses anomaly detection through AVS as one

means of reducing the burden on human analysts; we describe how the amount of video

humans need to watch can be reduced to only that video which is anomalous. Finally, the

chapter gives a brief overview of the mathematical models we will refine in this thesis to

facilitate AVS.

1.1 Strategic Implications of Full Motion Video

The prevalence of overhead FMV on the battlefield can provide advantages for the

U.S. and its allies if used properly. As an intelligence medium, FMV has the potential

to impact: 1) mission planning [5]; 2) real-time targeting, tasking, and retasking [5]; 3)

commander sensitivity to cultural, social, economic, and political interconnections [5]; and

4) force protection and counter-terrorism [29].
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First, FMV positively impacts mission planning. Mission planners use FMV to focus

assets on geographic points of greatest interest. For example, if intelligence ties adversary

activity to a particular building, then observed movement from that building to another may

demonstrate adversary activity at the second building [5]. Such movement may indicate

need for force application (or more intelligence collection) around such particular points

and minimize use of assets where no adversary activity is indicated. Moreover, mission

planners use FMV to minimize civilian casualties. For example, if intelligence gleaned

from video data shows that insurgents regularly travel to a point away from civilian activity,

such insurgents can be engaged where and when collateral damage is unlikely [5].

Second, FMV enables rapid discovery of hostile activity among both insurgent and

large-scale military adversaries. Wide area video can depict large-scale movement such

as fleeing civilians or civil unrest. When these occur, command and control elements

can be notified and appropriate action taken. Furthermore, FMV can uncover specific

small-scale events such as the placement of an improvised explosive device (IED) [5]. In

addition, full motion video taken during operations can alert operators and commanders of

changing conditions. For example, FMV analysis might reveal cases in which insurgents

depart combat emplacements and enter vehicles in an attempt to flee. This condition, when

detected, could aid in real-time retasking of ground and air assets.

Third, full motion video can reveal movement among important economic centers,

religious sites, and residences. Analysis of such data may reveal social, economic,

political, and cultural interconnections among a population. A deeper understanding of

these interconnections promotes cultural sensitivity among friendly forces. Such sensitivity

produces desirable battlefield effects while at the same time avoiding actions that may lead

to embarrassment [5]. For example, a campaign may have an objective to convince a

population that the U.S. action is necessary and moral. However, if efforts to convince

a particular population are combined with bombings of places they find important then the

2



effort will be counterproductive. Automated analysis of full motion video may reveal these

cultural interconnections.

Fourth, FMV aids in force protection and counter-terrorism, domains in which military

security has overlapping interests with civilian security. In force protection and counter-

terrorism, security seeks to monitor activities around a place to defend it. FMV can reveal

suspicious actions so that security may be dispatched to investigate. FMV is also used to

analyze past actions to determine when an illegal or dangerous act (such as Improvised

Explosive Device (IED) placement) occurred. This information may help identify who

placed the IED or where they went after having done so. FMV use to analyze the past is

called video forensics [29].

1.2 Limits of FMV: Too much data and too few analysts

Civilian law enforcement and military application of force are two domains that use

FMV. They face a common set of problems: overwhelming amount of data, shortage of

available analysts, and limitations related to human factors.

In civilian applications, video surveillance has seen widespread use; in certain

countries (like the U.K.) it has become ubiquitous. The U.K. now has one camera for every

17 citizens. To date, most video surveillance systems are used by private organizations like

corporations and private security firms. However, public law enforcement agencies install

FMV cameras increasingly as legal restrictions are relaxed [6].

Civilian use of video surveillance systems has allowed increased security and better

forensic analysis of criminal activity, but its effectiveness is limited because it is human-

labor intensive. U.K. estimates that only 1/4 to 1/78 of all video data is watched even once

by human operatives [7].

Research into civilian FMV-based security reveals human factors limitations: attention-

intensiveness and boredom. Most video data contains no information of interest [6]. A

U.K. Police Scientific Development Branch study claims that operatives in general cannot

3



effectively monitor more than four screens simultaneously [49]. The ratio of operatives to

screens in the U.K. is 1:16 [7]. Furthermore, a lack of centralized control in civilian ap-

plications often leaves operatives not knowing what they are looking for. This opens FMV

based security to further vulnerabilities. Illegal profiling and missing items of interest due

to cognitive bias are all real possibilities. Cognitive bias is a pattern of judgment (in this

case, on the part of security operatives) that leads to inaccurate perception in specific situ-

ations [27]. For example, a belief that people dressed a certain way are more likely to be

troublemakers would be an example of cognitive bias if, in fact, people dressed that way

were no more likely to cause trouble. Clearly, the realities of video surveillance in civilian

application demand research into computer automated systems.

The challenges to FMV use in military applications are parallel to those in civilian

applications. Kuperman [8], in his overview of the Distributed Common Ground System

(DCGS), details limitations affecting military capability. For typical U-2 spy plane

application, 45-47 people are required at all times to analyze incoming data. Typically,

planners provide 24 hour analyst coverage by establishing two shifts of 12 hours each,

thus demanding almost 100 trained personnel. Thus, not including short breaks, personnel

routinely spend 12 hours looking at computer screens with no pause or rewind capability.

Personnel who perform this function have summed it up shortly: “It’s painful” [8].

The large amount of incoming data hampers the application of two important concepts

in intelligence doctrine: Intelligent Queuing and Phased Exploitation [24]. First, by

“Intelligent Queuing” intelligence personnel ensure important and time critical data is

analyzed first. Second, by “phased exploitation” personnel ensure that small, important

portions of video data are analyzed more deeply; doctrine divides exploitation into phases

one through three according to to Table 1.1. Intelligence analysts use the table as a

framework to prioritize work.
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Table 1.1 contains three levels of intelligence exploitation. Tactical/real-time

exploitation refers to intelligence which will aid only in a particular, short-term skirmish

or battle [24]. For example, tactical/real-time exploitation might produce information that

insurgents have fled to a particular point; such information is of interest only until the

insurgents move again. Operational exploitation refers to intelligence that may inform

battlefield decision making over the course of a long-term conflict [24]. For example,

operational exploitation might produce information that insurgents typically flee to certain

types of buildings when threatened; such information is of interest until insurgents make

changes to their tactics. Strategic exploitation refers to intelligence that may inform the

methods commanders use to impact the cultural or political environment [24]. For example,

strategic exploitation might produce information that fighting in urban areas increases a

civilian population’s hostility to U.S. troops so much that it is not worth pursuing insurgents

into buildings; such information would be useful throughout a conflict since cultural

norms change very slowly. (Scientific and Technical Exploitation is described in the Joint

Publication 2-0 concerning intelligence [24] but not relevant to this thesis.)

Phases two and three (operational and strategic exploitation) involve higher commit-

ments of time and resources. Therefore, data receives phase two or phase three exploitation

only if it will likely yield 1) highly-valuable intelligence or 2) intelligence which is useful

for a long period of time. However, little FMV data is ever analyzed outside of phase one

because there is so much FMV data and it is difficult to determine what data bears fur-

ther exploitation [8]. The human-labor intensive process implies that as personnel budgets

shrink, computer automation is desirable [24].

1.3 Reducing human workload: anomaly detection

Human analysis of all FMV is prohibitively expensive and error-prone. A body of

machine learning research seeks to automate some part of the FMV analysis process,
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Table 1.1: Phases of Intelligence Exploitation

Phase Time Period Description

1 Hours-Days Tactical/Real-time Exploitation

2 Days-Weeks Operational Exploitation

3 Months-Years Strategic or Scientific and Technical Exploitation

thereby reducing the amount of human effort involved. One technique used in such an

automation is anomaly detection. Anomaly detection is a form of AVS which separates the

common from the uncommon in intelligence data. This section cites studies to suggest that

anomalous behavior is behavior of interest in FMV. These studies claim that one vital step

in reducing the amount of video needing to be watched is to eliminate everything normal

and highlight that which is anomalous.

Norris and Armstrong [36] produce a comprehensive report on surveillance installa-

tions from their personal study of two public installations in the U.K. According to their 7

working rules of video surveillance, trouble arises most typically where people or things

are out of place or out of time.

Military force protection literature echoes the out of place or out of time claim. The

U.S. Air Force Eagle Eyes program (which provides reporting mechanisms for suspicious

or criminal behavior) asks members and dependents to report people out of place. This

guidance from an Air Force security agency lends support to the claim that users of

automated FMV systems desire to cull out the anomalous sequences from FMV. Eagle

Eyes [1] defines out of place on its website thus:

People who don’t seem to belong in the workplace, neighborhood, business,

establishment, or anywhere else. It includes suspicious border crossings and

stowaways aboard ships or people jumping ship in port. This category [persons

out of place] is hard to define, but the point is that people know what looks right

6



and what doesn’t look right in their neighborhoods, office spaces, commutes,

etc., and if a person just doesn’t seem like he or she belongs, there’s probably

a reason for that.

Note that we make no attempt in this thesis to determine whether anomalies are in

reality more likely to be interesting acts. Instead, we make the assumption that users of

FMV wish to identify anomalous sequences within larger sets of video data. Thus, we aim

to provide a mathematically rigorous way to automate the anomaly detection process.

1.4 Scope of effort

The research of this thesis seeks to expand the tools available to perform anomaly

detection in FMV. Pairwise classification based on tracks is the specific area in which most

work is performed. The work described here assumes that tracks are already obtained from

full motion video; we do not attempt to advance the tracking process.

This research does not seek to classify tracks into normal and anomalous. However,

the work performed is still relevant to the field of anomaly detection. Some anomaly

detection methods take the approach of learning what is normal and alerting when

something abnormal occurs; others classify various entities into the classes normal and

anomalous. This thesis provides groundwork to support the latter method by classifying

experimental datasets designed to emulate the behavior of individuals in an FMV dataset.

Specifically, this research modifies a specific mathematical structure to improve

classification performance. The chain of procedures to produce classified tracks from

raw FMV video data is given in Figure 1.1, where a rhombus represents a dataset and

a rectangle represents a procedure. We seek to improve the process of classification to

produce classified tracks.

7



Full motion 

video data

Tracking

Tracks

Classification

Classified 

Entities

Scope of effort

Figure 1.1: Summary of AVS procedures to produce classified entities from FMV. The

scope of the work in this thesis is annotated.

1.5 Contributions

Previous work into automated anomaly detection has focused primarily on methods

that discretize high dimensional continuous spaces into discrete symbols. Discretization

(of which quantization is one form) reduces the amount of information to be processed

by a modeling technique. However, the discretization process also results in ignoring

information which may potentially provide class separation. In machine learning, class

separation is a numerical difference in the features of two objects to be classified. Class

separation is a key to reliable automated classification.

The research of this thesis relaxes the requirement that incoming data be discrete

symbols in order to make discretization unnecessary and preserve the information discarded
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by discretization. Specifically, this research uses a Hidden Markov Model (HMM) which

emits vectors from multi-dimensional continuous vector spaces. We term the resulting

structure a Multi-Observation Continuous Density Hidden Markov Model (MOCDHMM).

Current literature treats the MOCDHMMs thinly, instead favoring techniques which

use vector quantization and discrete-observation models. This may be due to the

mathematical complexities exposed when considering n-dimensional continuous vectors

instead of one-dimensional discrete symbols as observations. Several such complexities

are encountered and detailed here, including near-singular covariance matrices in training,

division by zero errors in HMM algorithms generalized for continuous spaces, and bias in

HMM-based classifiers. We propose several solutions to the encountered problems.

The work performed in this thesis makes MOCDHMMs a more viable option

in anomaly detection, removing limitations that require discretization and possible

information loss.
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II. Background and Related Work

This chapter presents an overview of the current state of the art in Automated Visual

Surveillance (AVS) and Hidden Markov Models (HMMs). Section 2.1 discusses papers

representing the state of AVS research as a whole. Section 2.2 describes advances using

HMMs other than MOCDHMMs. Section 2.3 treats a few studies into MOCDHMMs.

Several papers are cited here to suggest that most applications of HMMs use either

single variable models or discretized observations. Multi-Observation Continuous Density

HMMs (MOCDHMMs) have received little attention.

2.1 Related Work in Automated Surveillance

The Air Force Institute of Technology (AFIT) working in conjunction with Air

Force Research Laboratories (AFRL) has coined the term “Computational Patterns of

Life” (CPOL) to encompass research devoted to solving the problems posed by lack of

automation when humans analyze intelligence data (including full motion video). CPOL is

an umbrella term for the use of machines to explain past behaviors, issue real-time alerts,

or predict future behavior across any domain where intelligence is gathered. Conceivable

domains include text messages, email, Facebook and Twitter communications, telephone

calls, photographs, video data of various resolution, and Hyperspectral Imagery (HSI). The

chart in Figure 2.1 depicts one possible view of the CPOL family of solutions.

Referencing Figure 2.1, the areas labeled III, VI, and IX comprise AVS. This research

focuses on areas labeled III and VI (highlighted), treating problems and technologies

related to analyzing the past and providing real-time alerts using AVS.
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Domain

Text Still Imagery Video

Analyzing 
the Past

Issuing 
Real Time 
Alerts

Predicting 
the 
Future

I II III

IV V VI

VII VIII IX

Figure 2.1: The CPOL family of solutions. This is one way of visualizing the various tasks

and domains of interest.

2.1.1 Terminology.

Researchers use the term visual surveillance to describe any method for monitoring

activity in an area and the term Automated Visual Surveillance (AVS) to describe the

application of a machine to the task.

Although literature included in this survey gives no universal definition for the term,

researchers typically use Anomaly Detection to mean the application of a machine to

discover where observed behavior departs from common behavior [34]. This broad

definition brings widespread agreement, but sharp divides exist in implementation details.

Two major implementation approaches are found in literature. In the first (more commonly

used) approach, the solution seeks to determine what behavior is normal and then to report

any behavior outside that model [34, 39, 45, 54]. In the second approach, termed a priori

modeling, specific definitions of what is anomalous are provided to the algorithm, which

reports finding them [35].

11



Literature uses the terms behavior decomposition and behavior modeling to describe

the act of a machine to derive patterns from the observed behaviors of the entities in a

video sequence [7, 34]. For example, a machine might be trained to recognize a particular

sequence of actions a human might take upon walking into a room—work at a desk, walk

to the printer, then leave. Duration modeling is a form of behavior modeling primarily

concerned with the length of time entities spend doing various actions [34]. Some authors

use other terms to describe behavior modeling; Corbeil [5] uses the term normalcy model

to indicate a numerical structure forming a baseline against which anomalous behavior

can be judged. This thesis uses the terminology of behavioral modeling which produces a

behavioral model against which to judge anomalous behavior.

A near-constant in implementations to solve CPOL problems is the application of a

learning structure based upon graphs and feedback. Examples include Gaussian Mixture

Models, Dynamic Bayesian Networks, and Artificial Neural Networks. We refer to them

as graphical structures since that is the most common term in literature. Occasionally used

is Probabilistic Inference Network which has the same meaning.

One difficult-to-describe concept is the moving parts of a scene an algorithm analyzes.

Moving parts might be vehicles on a road, people in a parking lot, or employees in an office.

Some papers refer to moving parts as objects, others as blobs. Some refer to moving images

of interest as players within the scene. No term has won widespread acceptance. We adopt

the term entities within this thesis.

2.1.2 State of the Art.

Research into CPOL technology remains in its infancy. An exhaustive literature search

has uncovered no operationally ready solutions. However, literature after 2005 shows a

sharp spike in experiments and relative successes (see chronology in Figure 2.2). Still,

most techniques treat only a part of the problem or have substantive work to be done before

becoming operationally relevant.
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A key distinction to make in the AVS techniques is that between object based

decomposition and behavior based decomposition. This distinction represents the first

division in classifying the myriad techniques designed to solve AVS problems.

Object based decomposition methods (also known as tracking based methods) use the

process called tracking “to identify foreground pixels over time as belonging to a particular

moving or stationary object” [7]. According to Dee [7] in her 2008 survey, almost all

methods proposed to automate video surveillance depend on a hierarchy of techniques

which may include tracking, scene modeling, behavior analysis, and detection of specific

alarm events [7]. Each level in the hierarchy feeds data to a higher level. Thus, tracking is

the most basic task, producing the data which all the others analyze. This data is usually

described in a simple vector including only x position, y position, and velocity. A detected

event in object based decomposition is one that a certain entity is moving in an unusual

way. Most literature before 2006 reflects a strong tendency toward AVS methods that rely

on tracking in some way.

 1997: Recognizing 

Human Dynamics 

 2005: 3 Conferences/2 

Special Journals Devoted to 

CPOL in video 

 2007: GMTI 

Exploitation (Object 

– Based) [5] 

 1996: Tracking 

 1998: Detection and 

Tracking [17] 

 2004: Behavior Based 

Decomposition [14]

 2008: Infinite Hidden 

Markov Models [35]

 2011: Dynamic 

Bayesian Networks [30]

Figure 2.2: A timeline of innovation relevant to Automated Video Surveillance

However, since 2006 new methods have evolved which operate by analyzing more

than just entity movement data; these are behavior based decomposition methods [33].
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While object based decomposition detects anomalies in entity movement, behavior based

decomposition detects anomalies by noting changes within the entire image. Note that even

Behavioral Based Decomposition may perform some form of feature extraction to separate

moving objects from background pixels. The vectors to which moving entities are reduced

in behavior based decomposition are typically much larger than those in Object Based

Decomposition, intending to capture more information about the image. The distinction

between object and behavior based methods lies primarily in whether the method detects

an anomaly primarily in the entities’ movement or in a region of the image.

Although neither paradigm has yet yielded an operationally ready solution, both

methods have seen some degree of success. A shortage of standardized methods of

evaluation makes determining the best methods difficult [7, 55]. However, it is possible

to observe how the state of the art has matured considering some of the later techniques

described. While most methods claim an ability to detect an action of interest in some

meaningful way, others have begun to tackle advanced considerations such as predicting

future behavior [5, 29], ensuring a computable solution [34], or managing real-world

concerns like multiple camera views [33].

2.1.3 Object Based Decomposition Methods.

This section describes related work in Object Based Decomposition, a method used in

this research.

2.1.3.1 Experiments Involving Object Based Decomposition.

Literature presents a wide range of experiments based upon tracking methods, most

of them performed before 2005. This section describes four significant experiments.

Morris and Hogg [35] sum up the use of tracks to implement AVS the following way.

The difficulty is reducing the motion data to a mathematical form from which statistical

models can draw out anomalies. At closer resolutions, no two tracks will ever be performed

in the exact same way. (To understand this concept, consider two people walking down a
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hallway. At low resolutions, their paths may seem similar. However, when observing from

a closer perspective, the chance their footsteps will land in the same places or that their

lateral position in the hallway will be the same approaches zero.) Thus, naı̈ve statistical

models will consider all tracks anomalous against one another. Successful statistical

models will determine which tracks are most like one another.

Morris and Hogg leverage this concept to detect behaviors common to car thieves in

a crowded parking lot. To do this, they reduce points of interest to the entities’ closest

path of approach to other cars in the lot. An algorithm assigns each entity a probability

on the assumption that low speeds and repeated approaches to cars are anomalous. The

probabilities for a single entity over multiple cars are arranged into a sequence of increasing

probability. The least probable terms are then compared with those of other entities to

determine the most atypical trajectories. The method had good results in identifying

anomalous behavior as portrayed by actors in the scene. All six entities acting like car

thieves were identified. However, four normal trajectories were misclassified as anomalous,

a fairly high misclassification rate. Also note that the method makes an assumption about

what anomalous behavior of interest—someone looking for cars to break into. This is not a

general solution, and it assumes that car thieves behave in a specific unchanging way [35].

Stauffer and Grimson [45] perform an experiment that realizes an interesting result

using object based decomposition. Once they have tracked trajectories, they use a codebook

of prototypes generated at run time (called on-line in machine learning parlance). This

codebook initializes with a certain number of prototypes centered at existing data points.

For each incoming object requiring classification, the classifier moves the prototypes closer

to the object at some learning rate. This continues until it has a datastore permitting

effective classification of tracked objects by identity (car, pedestrian, etc. . . ) This data

can then be used to determine which entities are anomalous. The determination has two

inputs: the codebook data and comparison against co-occurrence data from like objects.
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This idea relies on the idea the similar types of objects should behave similarly, which is of

course a restrictive limitation the authors concede.

Oliver et al. [37] describe still another method based upon tracking. Their paper,

published in 2000, is an early example of tracked entities being analyzed using a statistical

Bayesian technique—in this case a form of Hidden Markov Model (HMM). Oliver et

al. analyzed pedestrians in an outdoor scene to detect anomalies in the way two people

respond to one another. An action was classified anomalous if the machine had never before

seen a similar action. For example, prior explainable behaviors were “follow”, “approach,

talk, and continue separately”, “approach, talk, continue together”, or “change direction,

approach, talk, continue separately”. Their experiment demonstrated significant success in

one common metric—a very high, flat Receiver Operating Characteristic (ROC) curve (see

Section C.3.1).

Duong et al. [9] performed a similar experiment in that it relied on tracking and a

statistical graphical model for analysis of video feed data. In this case, Duong attempted to

automate the surveillance of elderly residents in assisted living apartments. The application

is important, as computers may be able to save lives if they can alert medical personnel of

unexplained stops in movement or strange behavior like strokes. The model used by Duong

et al. is different from that used by Oliver et al.—a Switching Hidden Markov Model.

Duong et al. also consider a domain different from Oliver et al.; Duong et al. seek to detect

abnormal behavior in a single person whereas Oliver et al. detect abnormal behavior in two

people’s response to one another. The Duong et al. experiment reports a high ROC curve

[11], thus showing promise for operational application. At a 10% false positive rate the

classifier achieves over 85% detection of abnormal conditions. This is not high enough for

application to the intended domain (automated monitoring of elderly residents), but is high

by comparison to other methods of 2005 and before.
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The experiments described in this section were primarily performed before 2005.

Later research efforts in automated video surveillance have moved toward behavioral based

decomposition methods. However, some object based decomposition methods continue,

primarily in defense-contracted activity.

2.2 Related work in Discrete or Single-Variable Hidden Markov Models

Most related work in HMM application to AVS reduces model complexity by

discretizing observations, quantizing multidimensional vectors into 1-D vectors, or both.

This section detail several relevant examples of HMM use other than MOCDHMMs. Cited

works are mostly from AVS or its parent fields (Computer Image Processing and Computer

Vision). Examples from other fields are included only to show novel mathematical

techniques. The work divides into studies which 1) reduce to 1-D observations, 2) discretize

observations, and 3) do both.

2.2.1 Related works which reduce to 1-D observations.

In several image processing applications, researchers reduce multidimensional images

to single-dimensional observation vectors by regarding slices of the image as individual

1-D observations. Several image classification algorithms reduce 2-D images to single-

dimensional observation vectors by considering a block of the image at a time and inputting

only a weighted mean grayscale value [4, 38, 44, 48]. Vstovsky and Vstovskaya [48]

modify the Viterbi algorithm to produce the Network Algorithm (NA); NA discovers the

method of traversing an image pixel by pixel that makes a particular HMM most likely

to have produced the image. In this way, HMMs process 2-D images as series of 1-D

observations.

Wilson and Bobick [50] perform work in gesture recognition; they reduce the

multidimensional output PDF of various gestures to the smallest number of dimensions

required to classify it by HMM. Wilson and Bobick’s work lays a theoretical groundwork
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for classification by multidimensional HMMs, but they perform experiments only in the

case where the gesture can be reduced to a single dimension.

2.2.2 Related works which discretize observations.

A few papers reduce HMM complexity by discretizing the individual observations in

N-dimensional vectors. This permits the use of discrete Probability Mass Functions (PMFs)

vice continuous Probability Distribution Functions (PDFs).

Huang et al. [21] perform automated recognition of hand gestures; each finger is a

variable in the 5-long observation vector. The positions of the fingers are discretized into

the positions bending, half-bending, or straight.

Ham and Park [19] perform automated recognition of 3D objects in range images.

Researchers multiply the real values of their feature vector by 30 (determined experimen-

tally) and round to the nearest integer. Rounding each value within the feature vector to an

integer ensures the values are discrete and capable of being modeled by a discrete PMF.

Rimey and Brown [43] explore automating camera motion in computer vision

applications. Their feature vector is the (x, y) position of the fastest moving object in the

frame; the variables x and y are “coarsely quantized”, but researchers do not give details on

the quantization method they use.

2.2.3 Related works which reduce to 1-D observations AND discretize observa-

tions.

Some models in related works reduce training datasets to a series of 1-D, discrete

symbols from a finite alphabet. Methods to achieve such a reduction include those relying

on Vector Quantization (VQ) and those relying on methods other than VQ. This section

first surveys 1-D, discretized methods using VQ and then survey a method not using VQ.

VQ has provided 1-D discrete observations to HMMs since the first application of

HMMs in speech recognition in the late 1970’s. VQ reduces high-dimensional continuous

vectors to 1-D discrete observations using a codebook of quantized regions. Each vector
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is assigned to the quantized region it is closest to by some distance measure (usually

Euclidean distance). The quantized regions are adjusted throughout the training procedure

[51].

A large body of research leverages the VQ technique; examples of prominent work

in speech recognition are [18, 32, 42]. Yamato [54] presents a similar case using VQ and

mesh processing applied to recognizing human action in video data. Jung [26] applies the

technique to hand gesture recognition. Forchammer et al. [13] apply VQ observations and

HMMs to lossless bi level image encoding.

Despite success in certain applications, VQ potentially subjects data to distortion

if quantized regions are not able to be neatly partitioned. To overcome this limitation,

variations have been proposed. Semi-Continuous HMMs supplement the VQ codeword

with a continuous Gaussian variable representing how likely the VQ codeword is. Huang

et al. [22] apply the technique to large-vocabulary speech recognition.

By contrast, Duong et al. [9] obtain 1-D, discrete symbols without using VQ. Duong

et al. seek to detect anomalous behavior among elderly residents in assisted living in video

data. Rather than devise a continuous feature vector, they divide the subject residents’

rooms into 16 squares where each square number is the 1-D output symbol of their HMM.

The Duong et al. experiment uses those integers from 1 to 16 as observations from what

they call the Switching Semi-Hidden HMM (SSHMM).

2.3 Multi Observation Continuous Density Hidden Markov Models

This chapter now turns to MOCDHMMs. Unlike studies surveyed above, MOCDHMMs

do not use discretization of HMM output feature vectors. This section first describes why

elimination of discretization may be helpful to HMM modeling and then surveys some

related work using MOCDHMMs.
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2.3.1 Why MOCDHMMs are a good choice in Automated Visual Surveillance.

MOCDHMMs are a good choice in AVS problems where minimum information loss

from the feature processing step is required. Studies such as [19] and [21] perform well

since the information loss in discretization does not impact separability. If this is the case,

simpler observation vectors will likely produce comparable results to MOCDHMMs. (In

our work, the dataset is difficult to separate, and more complex observation vectors are

required.)

2.3.2 Related work in MOCDHMMs.

Only a small portion of research effort in AVS has been devoted to Multi Observation

Continuous Density Hidden Markov Models. Most efforts that do use MOCDHMMs ignore

possible dependency among variables, whereas the method of this thesis is sensitive to

such dependency (also called covariance). Following is a survey of the few examples of

MOCDHMM use reported in literature with specification of how our application differs.

The work presented in this thesis differs from previous MOCDHMM research in

two major ways. First, by training HMMs that emit multi-dimensional observation

vectors from non-diagonalized covariance matrices, we classify according to (among other

things) covariance among the variables. In difficult-to-separate datasets, calculating such

correlation among features may permit separating the classes. Second, we present a new

method for selecting the correct HMM using scored evaluation rather than log-likelihood

alone.

Tokuda et al. [46] present a theoretical framework for multi-space continuous

HMM application without performing experimental evaluation of their method. They

aim to solve problems presented when input data may contain discrete, 1-D observations

and continuous, multi-dimensional observations simultaneously. The technique uses a

generalized version of continuous-density Hidden Markov Models in which the length

of the observation vectors is not constant. The model consists of a series of real spaces
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Ω1,Ω2, ...,ΩG ∈ Ω; each real space may have a different dimension. Each real space

has an associated probability that defines how likely it is to have contributed to the

observation. Each observation consists of a set of indices describing which real spaces

contributed and an n-dimensional vector of the continuous observations. In this way, a

sample space can be designed to have a dimension of zero such that it is a single symbol.

Certain applications cited by Tokuda et al. have datasets containing both multi-dimensional

vectors as some observations and single-dimensional symbols as other observations; such

varied dimensionality of observations within the same dataset makes the Tokuda framework

relevant.

Vogler et al. [47] study automated recognition of American Sign Language (ASL),

introducing the concept of the Parallel HMM (PaHMM). In this method, a different HMM

is trained to model each component of the observation. Thus, eight HMMs are required to

model the observation vectors of length eight in their experiment. Experimental evidence

demonstrates that the method is effective for the ASL application. Note that because one

HMM is used to model each observation in the feature vectors, no covariance among the

observations is modeled in the Vogler et al. technique.

Fielding et al. [12] apply MOCDHMMs to recognition of moving light displays. They

use six Fourier magnitude coefficients, one from each of six regions in the moving light

displays. Lee et al. [31] apply a similar technique to refinement of speaker-independent

speech-recognition databases; a 24-element vector is used as HMM output. However,

Fielding et al. and Lee et al. constrain the covariance matrices of the Gaussian PDFs

they use to be diagonal and ignore possible covariance among them. The method of this

thesis relaxes the requirement to diagonalize the covariance matrices.

Pruteanu-Malinici and Carin [39] leverage the infinite HMM, an HMM with a

theoretical infinite number of hidden states, to recognize abnormal events in closed circuit

surveillance video. The feature vector used in [39] is 1200 parameters long. While
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Pruteanu-Malinici and Carin do not specify that they use a non-diagonalized covariance

matrix, any other formulation would require (1200)2 entries and is unlikely. Accordingly,

we believe that the method of this thesis diverges from that of Pruteanu-Malinici since we

allow non-diagonalized covariance matrices.

Examples of MOCDHMMs with non-diagonalized covariance matrices are in [3] and

[16]. These two papers use the Gaussian PDFs without the generalization described in

this thesis, apparently without encountering the same errors encountered in this thesis for

reasons unspecified in the papers. It may be that certain datasets are more vulnerable to

those errors.

2.4 Automated Video Surveillance: Conclusion

This section has presented a literature survey concerning one subset of the CPOL

family of problems, Automated Visual Surveillance (AVS). Research into AVS is still in

its inception phase, and no solutions seem to be ready for operational fielding. However,

since 2005 research work in the area has intensified. One of many available techniques for

AVS involves Hidden Markov Models, most of which use some simplifying assumptions

about output vectors. Such simplifications are Vector Quantization (VQ), discretizations

of vector elements, techniques to reduce dimensionality to 1-D, or diagonalization of the

covariance matrix. This thesis will describe a method to make HMM calculations without

such simplifications.
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III. Methodology

This chapter describes the methods used to classify time-position tracks gathered

from Full Motion Video (FMV). Classification is performed using Multi-Observation

Continuous Density Hidden Markov Models (MOCDHMMs). The chapter first presents

the approach taken to preprocess time-position tracks into observation sequences on

which MOCDHMMs may operate. Second, the chapter presents the general approach

for classification by Hidden Markov Model (HMM). It then provides the implementation

details (for training and classification) of the general methodology under what we term the

standard MOCDHMM algorithm. The chapter next details mathematical problems which

result from using the standard MOCDHMM Algorithm and moves on to propose fixes to

those problems under what we term the modified MOCDHMM algorithm. Finally, the

chapter presents a methodology for empirically comparing the performance of the standard

versus modified MOCDHMM algorithms.

3.1 Preprocessing entity tracks in Full Motion Video (FMV)

Our method seeks to separate entities using track only, since that is the data expected

to be available from a real-world sensor. Preprocessing is the process in Automated Visual

Surveillance (AVS) which produces the vectors on which a mathematical structure will

classify. For our purposes, preprocessing is used to generate observation sequences S =

(O1,O2, . . . ,OT ) from series of position and time data (time,x-coordinate,y-coordinate).

One observation per timestep is recorded for each tracked entity from its source to its sink;

the combined observations of one walk of one entity are termed a sequence. A group

of sequences (usually believed to all have come from the same type of pedestrian) is a

sequence set. See figure 3.1.
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Figure 3.1: Definitions of observation, sequence, and sequence set. An observation is a

state of one agent at one point in time. A sequence is the walk from source to sink of one

agent. A sequence set is a group of sequences.

3.2 Classification by HMM

Algorithm 3.2.1 classifies observation sequences S using HMMs. Both the standard

MOCDHMM algorithm and the modified MOCDHMM algorithm follow the framework

in Algorithm 3.2.1. Algorithm 3.2.1 takes three observation sequence sets: the class A

training set EA, the class B training set EB, and a set EU of observation sequences whose

class is unknown to the algorithm. (Researchers know the correct label for every sequence

in EU .) Algorithm 3.2.1 returns a set of labels labels where labels[SU
i ] is the label the

algorithm assigns to sequence SU
i ∈ E

U . In our experiments, the algorithm receives an

accuracy ratio reflecting how often it is right versus the number of sequences it classified

per Eq. (3.1).
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Classifier Accuracy =
Correctly Classified

Total Classified
(3.1)

In Algorithm 3.2.1 each sequence is classified according to the class X of whichever

HMM λX has the highest likelihood of having produced the sequence. KMeansLearn takes

a training set EX and a number of hidden states N and returns a trained HMM λX as

described in Section 3.3.3. ForwardBackward returns the log-likelihood L(SU
i |λX) of an

HMM λX having produced sequence SU
i as described in Section 3.3.4. Algorithm 3.2.1

sets the label labels[SU
i ] of each of each sequence SU

i to the class X which maximizes

L(SU
i |λX).�

�

�

�

Algorithm 3.2.1: ClassifyObservationSequences(EA,EB,EU)

λA ← KMeansLearn(EA,N)

λB ← KMeansLearn(EB,N)

for SU
i ∈ E

U

do


L(SU

i |λA)← ForwardBackward(SU
i , λA)

L(SU
i |λB)← ForwardBackward(SU

i , λB)

labels[SU
i ]← argmaxX∈{A,B}L(SU

i |λX)

return (labels)

3.3 Standard MOCDHMM Algorithm

This section presents the standard MOCDHMM Algorithm. The algorithms and

equations presented in this section are primarily taken from references [25, 41] which

are theoretical treatments of HMMs published in 1989 and 1990 respectively. Although

[25, 41] lay the theoretical groundwork for the work performed in this research on

MOCDHMMs, they present no experimental validation of the techniques. Thus, they

neither encounter nor treat several mathematical shortcomings which we have discovered

to occur when applying MOCDHMMs.
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This section presents general theory on discrete, single-observation HMMs, general-

izes to theory concerning MOCDHMMs, and then presents two algorithms central to HMM

use: Segmental K Means Training and the Forward Backward algorithm.

3.3.1 Hidden Markov Models and the Markovian Assumption.

HMMs are a generalization of Discrete Time Markov Chains (DTMCs). DTMCs are

presented in this section to lay the groundwork for HMMs and their related algorithms

described in Sections 3.3.2, 3.3.3, and 3.3.4.

A DTMC is a mathematical structure used to model stochastic processes. The

structure is defined by a series of N states labelled {1, 2, . . . ,N}. The model is always

in some state i at time t and transitions according to a random probability to the next state

(possibly back to i). The transition probability is defined by a state transition matrix A

composed of ai j which gives the probability of transitioning from state i to state j at time

t + 1. The initial state is defined by a set of N elements π = {π1, π2, . . . , πN} in which the

probability of starting in state i is πi. Then, the probability of realizing a particular state

sequence s = (i0, i1, . . . , iT ) over T transitions is given by

Pr(s|A, π) = πi0

T∏
t=1

ait−1it (3.2)

Hidden Markov Models are a generalization of Discrete Time Markov Chains in

which the state of the process is not directly observable. Instead, upon entry each state i

emits an observation O drawn from a Probability Mass Function (PMF) bi(O) which gives

the probability of emitting observation O upon entering state i. HMMs thus produce an

observation sequence S = (O1,O2, . . . ,OT ) whereas DTMCs produce a state sequence

s = (i0, i1, . . . , iT ). The Hidden Markov Model is defined by a tuple of parameters

λ = (A, B, π). In this tuple, the set B = {b1, b2, . . . , bN} represents the PMFs of the hidden

states. Using such a generalization renders Eq. (3.2) useless since it is no longer known
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exactly which state has been entered at each time t. The probability of realizing observation

sequence O given HMM λ is then

Pr(O|λ) =
∑

i

πi0

T∏
t=1

ait−1itbit(Ot) (3.3)

Note that, by these definitions, both Hidden Markov Models and Discrete Time

Markov Chains obey the Markovian Assumption. That is, the future state of the process

depends only on the present state and is independent of the past states. Note also that the

analysis of this section assumes all observations O are discrete; that is, they are drawn

from a set of possible symbols in a finite alphabet V according to probabilities in a PMF.

Moreover, the observations O in this section are strictly one-dimensional. The next section

generalizes to multi-observation continuous HMMs.

3.3.2 Generalizing the HMM: Multi-Observation and Continuous Density Obser-

vations.

Suppose that in any given state, an HMM need not emit an observation from a discrete

PMF, but rather one from a continuous distribution. Then, the PMF bi(O) becomes a

Probability Density Function (PDF) instead. Furthermore, in 1-D HMMs described above,

observations are constrained to a scalar values. However, in our research, we allow

observations to be vectors of multiple values.

Thus, this thesis uses a generalized form of HMM referred to as a Multiple

Observation Continuous Density HMM (MOCDHMM). MOCDHMMs require specialized

training and evaluation procedures. Segmental K Means Training and Forward Backward

Evaluation (Sections 3.3.3 and 3.3.4 respectively) work correctly for discrete, single-

observation HMMs. However, both Segmental K Means Training and Forward Backward

Evaluation in their unmodified forms cause mathematical errors when applied to

MOCDHMMs. This section proceeds to give descriptions of Segmental K Means

Training and Forward Backward Evaluation in their standard form. This section
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details mathematical problems when applying Segmental K Means Training and Forward

Backward Evaluation to MOCDHMMs in Section 3.4.

3.3.3 Segmental K Means Training.

Two methods exist for training a Hidden Markov Model: Baum Welch (BW) Training

and Segmental K Means Training. Only Segmental K Means Training is used in this

research. This section compares and contrasts BW and Segmental K Means Training in

order to demonstrate how Segmental K Means Training works and motivate its use in this

research.

K Means learning is useful because it is not highly sensitive to the choice of initial

HMM parameters λ. By contrast, BW Training, being an Expectation Maximization

technique, is susceptible to settling in suboptimal local minima depending on choice of

initial HMM parameters λ. In addition, Segmental K Means is computationally simpler

that BW Training.

Both BW Training and Segmental K Means Training use an iterative process; each

iteration produces a new HMM λ from an existing HMM λ such that Pr(S|λ) > Pr(S|λ) for

training observation sequence S. However, BW Training and Segmental K Means Training

use different methods to train the HMMs. BW Training uses Expectation-Maximization

(E-M) to maximize the likelihood f (S|λ) in Eq. (3.4).

f (S|λ) =
∑

s

πs0

T∏
t=1

ast−1 stbst(Ot) (3.4)

That is, BW Training maximizes by selection of HMM λ the likelihood of observing

sequence S. Thus, Eq. (3.4) is an objective function which sums over all possible state

sequences.

By contrast, Segmental K Means Training uses a different optimization function than

Eq. (3.4). Segmental K Means Training, unlike BW Training, seeks to maximize f (S|λ)
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for the most likely state sequence. The Segmental K Means Learning objective function is

shown in Eq. (3.5), where maxs is a function which selects the most likely state sequence.

max
s

f (S, s|λ) = max
s
πs0

T∏
t=1

ast−1 stbst(Ot)) (3.5)

Accordingly, Segmental K Means Learning entails a two step process: 1) determine

the most likely state sequence s for observation sequence S and 2) optimize λ to make that

s most likely given S. Step one uses Viterbi decoding [41] to find the most likely state

sequence. Step two determines a new HMM λ to maximize Eq. (3.5). These two steps

are continued until subsequent iterations produce no change between λ and λ, a condition

termed convergence. It can be shown that the algorithm will converge in all cases. For a

proof of guaranteed convergence, see [25].

Whereas the Segmental K Means Algorithm produces an HMM λ trained to model

a particular set of training data, it does not determine the likelihood f (S|λ) of realizing a

particular observation sequence S from λ. To determine f (S|λ), the Forward Backward

algorithm is used.

3.3.4 Forward Backward algorithm.

Let λ be an HMM trained (such as by Segmental K Means Training) to fit a particular

set E of training data. The forward-backward algorithm exists to determine the likelihood

f (S|λ) of realizing a particular observation sequenceS given λ. The naı̈ve way to determine

f (S|λ) is to enumerate all possible state sequences s and determine the likelihood of

realizing S for each s. This is not computationally feasible, as there are on the order of

O(NT ) values for s where N is the number of states and T is the length of the observation

vector. To confront this problem, the Forward Backward Algorithm is used instead.

To illustrate the Forward Backward algorithm, consider the forward variable αt(i) as

defined in Eq. (3.6).
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αt(i) = f (O1,O2, . . . ,Ot, st = i|λ) (3.6)

The forward variable αt(i) describes the probability of realizing the partial observation

vector until time t and being in state i at time t given HMM λ. The algorithm to solve

inductively for αt(i) is as follows [40]:

1. Calculate α1(i) given πi and bi for all hidden states i

α1(i) = πibi(O1), 1 ≤ i ≤ N (3.7)

2. For times t = 2, 3, . . . ,T and hidden states i, calculate the forward variables αt(i)

αt+1(i) =

 N∑
j=1

αt( j)ai j

 bi(Ot+1) (3.8)

3. Sum over the hidden states for the last timestep to determine the joint likelihood

f (S|λ) =

N∑
i=1

αT (i) (3.9)

In this algorithm, bi(Ot) indicates the likelihood of observing Ot given that the process

is in state i. This algorithm is called the forward algorithm. (There also exists a backward

algorithm for obtaining the same result. However, only the forward algorithm is used for

this thesis.)

This simple form of the forward algorithm is inadequate for actual calculation,

however, as long sequences underflow the likelihood calculation on most machines.

Instead, a scaling procedure is used to directly calculate the log-likelihood. From Eq.

(3.8), observe that each forward variable αt(i) is the sum of a large series of other forward

variables α1 through αt−1 for each state. Each of these forward variables can be expressed

by

αt(i) =

 t−1∏
τ=1

asτsτ+1

t∏
τ=1

bsτ(Oτ)

 (3.10)
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where sτ is the state of the process at time τ. In other words, each forward variable αt(i)

is the result of repeated multiplication of probabilities ai j and likelihoods b j(O) for each

timestep τ < t. Note that each probability ai j is less than one, each likelihood b j(O)

is usually less than one, and both ai j and b j(O) may be much less than one. Thus, the

forward variable αt(i) approaches zero at an exponential rate as t increases and may result

in machine underflow quickly. Accordingly, a scaling procedure is required to compute

f (S|λ).

The scaling procedure modifies the forward algorithm of Eqs. (3.7) through (3.9).

Using scaling, Eqs. (3.7) through (3.9) are replaced by Eqs. (3.11) through (3.15), where

α̂t( j) is the scaled forward variable, ωt(i) is the intermediate forward variable, and ct is the

scaling factor.

1. Initialize the intermediate forward variable for time 1

ω1(i) = c1πibi(O1) (3.11)

2. For each time t and hidden state i, compute the intermediate forward variable using

the scaled forward variable α̂t−1(i) for time t − 1

ωt(i) =

N∑
j=1

α̂t−1( j)a jibi(Ot) (3.12)

3. Compute the scaling factor ct by summing over the hidden states

ct =
1∑N

j=1 ωt( j)
(3.13)

4. For each hidden state i, compute the scaled forward variable at time t by multiplying

the scaling factor by the intermediate forward variable. If t is not the last timestep,

goto step 2.

α̂t(i) = ctωt(i) (3.14)
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5. Determine the likelihood L(S|λ) using only the scaling factors ct

L(S|λ) = −

T∑
t=1

ln ct (3.15)

According to Eqs. (3.11) through (3.14), each scaled forward variable is divided by the

sum of the scaled forward variables across the hidden states for a given timestep. Rather

than representing a likelihood directly, the scaled forward variable then represents what its

ratio of likelihood is relative for that of the other states of the same timestep.

When using scaling, the likelihood f (S|λ) is not computed since it likely underflows

the machine. Instead, the forward algorithm is modified to calculate only the log-likelihood

L(S|λ) of realizing a sequence. To make such a calculation, observe that L(S|λ) is the

negated sum of the logarithms of the scaling factors (Eq. (3.20)). To derive Eq. (3.20) we

begin with the relationship between log-likelihood and likelihood in Eq. (3.16). We then

follow a four-step process.

L(S|λ) = ln[ f (S|λ)] (3.16)

By Eq. (3.9) the likelihood f (S|λ) is the sum over the states for the unscaled forward

variable αT (i) at the last timestep T . Substituting Eq. (3.9) in Eq. (3.16) gives Eq. (3.17).

L(S|λ) = ln

 N∑
i=1

αT (i)

 (3.17)

Then, observe that the scaled forward variable α̂t(i) equals the unscaled forward variable

αt(i) multiplied by the product
∏T

t=1 ct of all preceding scaling factors ct (for a proof see

Appendix B). Substituting α̂t(i) =
∏T

t=1 ctαt(i) into Eq. (3.17) gives (3.18).

L(S|λ) = ln

 1∏T
t=1 ct

N∑
i=1

α̂T (i)

 (3.18)
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Then note that the sum
∑N

i=1 α̂t(i) across the states of the scaled forward variable α̂t(i) is

one for all times t (for a proof see Appendix B). Substituting
∑N

i=1 α̂t(i) = 1 into Eq. (3.18)

gives Eq. (3.19).

L(S|λ) = ln
[

1∏T
t=1 ct

]
(3.19)

Finally algebraically manipulate Eq. (3.19) to obtain Eq. (3.20) for calculating the log-

likelihood L(S|λ) using scaling factors ct, as desired. (See algebraic manipulation in

Appendix B.)

L(S|λ) = −

T∑
t=1

ln ct (3.20)

3.4 Mathematical problems with standard MOCDHMM algorithm

Applying Segmental K Means Training and the Forward Backward algorithm as

described in literature [41] to MOCDHMMs causes several mathematical errors. This

section details three errors that we have discovered to occur when Segmental K Means

Training and the Forward Backward algorithm are applied to MOCDHMMs and shows

analytically how those errors occur. The errors we treat are as follows: badly conditioned

covariance matrices during training (Section 3.4.1), division by zero in Forward Backward

Algorithm alpha scaling (Section 3.4.2), and biased classifiers (Section 3.4.3). Section 3.5

proposes fixes to the three errors to give what we call the modified MOCDHMM algorithm.

3.4.1 Error 1: Badly conditioned covariance matrices.

This section first treats what we term error 1, which is badly conditioned covariance

matrices produced during Segmental K Means training (Section 3.3.3).

Each hidden state in a MOCDHMM emits N-dimensional observations O distributed

around a multi dimensional Gaussian distribution given by Eq. (3.21), where µ is the mean

vector and Σ is the covariance matrix of the PDF bi for hidden state i.
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bi(Ot) =
1

(2π)k/2|Σ|1/2
exp

(
−

1
2

(Ot − µ)T Σ−1(Ot − µ)
)

(3.21)

Eq. (3.21) requires a matrix inverse Σ−1. If PDF bi contains a near-singular covariance

matrix Σ, bi(Ot) cannot be determined by Eq. (3.21). Note that badly conditioned

covariance matrices may arise at several points during Segmental K Means Training. To

see why, consider that Segmental K Means trains HMMs iteratively; the HMM will have

one covariance matrix Σ for each hidden state for each iteration. Because a near-singular

Σ prevents Viterbi decoding (Section 3.3.3), a near-singular Σ in any hidden state at any

iteration stops the training procedure.

3.4.2 Error 2: Division by zero in alpha scaling.

We now turn to error 2, division by zero in alpha scaling. Error 2 occurs only in the

Forward Backward Algorithm (Section 3.3.4).

Let wt ∈ S
W be the observation at timestep t from the sequenceSW generated by HMM

λW . Consider calculating the log-likelihood L(SW |λZ) of sequence SW given different

HMM λZ. (The log-likelihood L(SW |λZ) is required when classifying SW as class W or

class Z.) Let bi(wt) be the likelihood of realizing wt given that λZ is in state i. Suppose that

wt is so unlikely for all PDFs in the hidden states of λZ that the probability underflows the

machine for each state. That is, bi(wt) ≈ 0 for i ∈ {1, 2, . . . ,N}.

Then the forward algorithm will encounter a division by zero error due to Eqs. (3.12)

and (3.13) as follows. In Eq. (3.22) (derived from Eq. (3.12)), the intermediate forward

variable ωt(i) ≈ 0 for all hidden states i since the likelihood bi(wt) ≈ 0 for all hidden states

i. In Eq. (3.23) (derived from Eq. (3.13)), ct at time t has a zero in the denominator.
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ωt(i) =

N∑
j=1

α̂t−1( j)a jibi(wt) (3.22)

= 0 i ∈ {1, 2, . . . ,N}

ct =
1∑N

i=1 ωt(i)
(3.23)

=
1
0

The calculation of L(SW |λZ) is then undefined.

3.4.3 Error 3: Biased classifier.

The last error we treat, error 3, concerns biased classifiers. Errors 1 and 2 occur

in Segmental K Means Training and the Forward Backward algorithm, respectively. By

contrast, error 3 is a result of Segmental K Means Training and the Forward Backward

algorithm working together to achieve classification.

An HMM classifier Λ, when classifying according to log-likelihood alone, may be

biased. That is, Λ may select one class or the other too often, leading to classification

accuracies well above random for one class and well below random for the other class.

To explain how a classifier may be biased, we first define the concepts of an HMM

recognizing a sequence. Let SA and SB be arbitrary observation sequences from sequence

sets EA and EB which trained HMMs λA and λB respectively. Let ΛAB be the classifier

formed by combining HMMs λA and λB Then:

• An HMM recognizes the sequences it was trained on better than other sequences if

and only if the average log-likelihoods of its own sequences is higher than others.

That is, HMM λA recognizes sequence set EA better than sequence set EB if and only

if the average log-likelihood L(SA|λA) > L(SB|λA).
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• A sequence set EA is recognized by an HMM λA better than another HMM λB if and

only if its average log-likelihood is higher against λA. That is, EA is recognized by

HMM λA better than λB if and only if on average L(SA|λA) > L(SA|λB)).

• Classifier ΛAB = {λA, λB} is biased toward a sequence set EA if HMM λB recognizes

EA better than does HMM λA.

HMM HMM

Sequence Set

Sequence Set

Sequence Set

Sequence Set

Classifier
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Figure 3.2: A biased classifier. In this depiction, the vertical axis represents log-likelihood

L(E|λ). The horizontal axis is meaningless; horizontal separation is allowed only to show

multiple points close to one another on the vertical axis. It is expected that this classifier

will produce substandard results. Since L(EB|λA) > L(EB|λB), all EB will be classified as A
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Figure 3.2 is a visual depiction of a biased classifier. Note that sequences in class

B will be classified as class A most often because their log-likelihood against HMM A is

higher.

3.5 Modified MOCDHMM algorithm

This section proposes fixes for each of the three errors given in Section 3.4 above.

This section contains three subsections, one for each error described in Section 3.4.

3.5.1 Proposed fix for error 1: Moore Penrose Pseudoinverse in Multivariate

Gaussian PDF.

This section proposes a fix for error 1 (Section 3.4.1): badly conditioned covariance

matrices. We refer to this fix as fix 1.

We propose changes to the Segmental K Means procedure for Gaussians proposed

in the classic Rabiner tutorial [41]. The Segmental K Means in [41] calls for calculating

the likelihood of an observation bi(O) based on the degenerate Gaussian PDF given in

Eq. (3.21). However, the covariance matrix inverse Σ−1 causes problems during training

of MOCDHMMs as detailed in Section 3.4.1. To address this problem, we change Eq.

(3.21) used to calculate bi(O) so that it does not require a matrix inverse. Thus, even a

badly-conditioned covariance matrix Σ can produce a valid likelihood bi(O).

The new formula for bi(O) is adopted from Multivariate Gaussian theory. Such theory

prescribes a generalized Gaussian PDF f (x), defined in Eq. (3.24) [10]. In Eq. (3.24),

Σ is the covariance matrix, µ is the mean vector, rank() returns the rank of the matrix, Σ−

denotes the generalized inverse, and det∗ denotes the pseudo-determinant.

f (x) =
1√

(2π)rank(Σ)det∗(Σ)
Exp

[
−

1
2

(x − µ)TΣ−(x − µ)
]

= bi(O) (3.24)

The concepts from Eq. (3.24) which do not exist in the degenerate Gaussian likelihood

formula (Eq. (3.21)) are as follows: rank, pseudo-determinant, and generalized inverse.

These three concepts are treated separately in the next paragraphs.
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Rank. rank(Σ) is the number of linearly independent rows in Σ. If n× n matrix Σ has

rank(Σ) = n, it is said to be full rank and always has determinant |Σ| > 0. Thus, a full-rank

Σ always has a matrix inverse Σ−1. However, a full rank Σ might still have determinant |Σ|

close to zero and thus be difficult to invert [10].

Pseudo-determinant. The pseudo-determinant ensures that even matrices whose

determinants are zero to machine precision are still supported by the PDF. Note that for

the degenerate Gaussian PDF in Eq. (3.21), |Σ| is in the denominator of a fraction. Thus,

the degenerate Gaussian PDF is undefined if |Σ| = 0. The pseudo-determinant det∗(Σ) in

the generalized Gaussian PDF replaces the determinant |Σ| in the degenerate Gaussian PDF.

The formula for a pseudodeterminant det∗(Σ) of the n × n matrix Σ is in Eq. (3.25) [10].

Note that in Eq. (3.25), the pseudo-determinant det∗(Σ) reduces to the standard determinant

|Σ| if Σ is full rank.

det∗(Σ) = lim
α→0

|Σ + αI|
αn−rank(A) (3.25)

Generalized inverse. The inverse Σ−1 of a matrix Σ satisfies ΣΣ−1 = I where I is

the identity matrix. The generalized inverse Σ− of matrix Σ satisfies the two less stringent

requirements in Eqs. (3.26) and (3.27) [2]:

ΣΣ−Σ = Σ (3.26)

Σ−ΣΣ− = Σ− (3.27)

Several procedures to calculate the pseudoinverse are available. Although any matrix

satisfying Eqs. (3.26) and (3.27) is an acceptable matrix for the generalized multivariate

Gaussian PDF in Eq. (3.24), the research of this thesis adopts the Moore Penrose

Pseudoinverse because it produces a unique generalized matrix inverse Σ− for every Σ.

The Moore Penrose Pseudoinverse satisfies the following two properties in Eqs. (3.28) and

(3.29), in addition to those given in Eqs. (3.26) and (3.27):
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(ΣΣ−)∗ = ΣΣ− (3.28)

(Σ−Σ)∗ = Σ−Σ (3.29)

In Eqs. (3.28) and (3.29), Σ∗ is the conjugate transpose of Σ. In this research Singular

Value Decomposition (SVD) method of calculating the Moore Penrose pseudoinverse is

adopted. Thus, if matrix Σ decomposes by SVD such that Σ = UAV∗ then the Moore

Penrose pseudoinverse Σ− = VA−U∗. Note that by SVD, A is always diagonal, and its

pseudoinverse A− can be taken by inverting all its nonzero elements and transposing the

matrix [2].

3.5.2 Proposed fix for error 2: Return negative infinity if the scaling factor is zero.

This section proposes a fix for error 2 (Section 3.4.2): division by zero in the alpha

scaling procedure. We refer to this fix as fix 2.

In this proposed modification, the piecewise function in Eq. (3.30) replaces Eq.(3.13)

for the Forward Backward algorithm.

ct =


1∑N

j=1 ωt( j)
,

∑N
j=1 ωt( j) > 0

∞ ,
∑N

j=1 ωt( j) ≈ 0
(3.30)

In this way, problem calculations for the log-likelihood L(S|λ) no longer produce division

by zero errors during ct calculation in Eq. (3.13). To see why, suppose
∑N

j=1 ωt( j) = 0. By

Eq. (3.13), calculating ct yields a division by zero error; by Eq. (3.30), ct is set to infinity.

If ct is set to infinity then
∑T

t=1 ct = ∞ as well. Thus, using Eq. (3.20), L(S|λ) = −∞,

indicating that HMM λ is so unlikely to have produced S that λ should not be considered

when classifying S. Because the main classification algorithm (Algorithm 3.2.1) classifies

sequences according to which HMM gives the maximum log-likelihood, HMM λ will not

be considered. Furthermore, no division by zero errors result.
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3.5.3 Proposed fix for error 3: Use scored evaluation instead of raw log-likelihood.

This section proposes a fix for error 3 (Section 3.4.3): biased classifiers. We refer to

this fix as fix 3.

We contend with the biased classifier problem by defining a new type of HMM, the

scored HMM λ̂. Let λ̂ include the same tuple of values that defines a standard HMM λ:

the transition matrix A, the set of PDFs B, and the starting probabilities π. In addition to

λ, λ̂ includes two additional parameters: mean log-likelihood µ̂ and standard deviation of

log-likelihood σ̂. To find µ̂ and σ̂, we calculate a set of log-likelihoods L with one log-

likelihood L(S|λ) for each sequence S in the training data E. We set µ̂ and σ̂ equal to the

mean and standard deviation of L respectively. The training procedure yielding λ̂ from a

set of training sequences E is in Algorithm 3.5.1.

Given a trained scored HMM, we obtain a score z(S|λ̂) (vice a raw log-likelihood

L(S|λ)) for sequence S using z(S|λ̂) =
L(S|λ)−µ̂

σ̂
. A score thus removes the bias from

a classifier by comparing against the distribution of log-likelihoods L rather than log-

likelihood alone. The classifier then classifiesS according to its score yielded by Algorithm

3.5.2 rather than L(S|λ) as indicated in Algorithm 3.2.1.�

�

�

�

Algorithm 3.5.1: TrainScoredHMM(EA)

λ← KMeansLearn(EA,N)

(A, B, π) = λ

L← ∅

for S ∈ E

do


L ← ForwardBackward(S, λ)

L.AddToSet(L)

µ̂← Mean(L); σ̂← StandardDeviation(L)

λ̂← (A, B, π, µ̂, σ̂)

return (λ)
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�

�

�

Algorithm 3.5.2: ScoredForwardBackward(S, λ̂)

(A, B, π, µ̂, σ̂)← λ̂

λ← (A, B, π)

L ← ForwardBackward(S, λ)

return (L−µ̂
σ̂

)

Algorithm 3.5.3 is a modified version of Algorithm 3.2.1 incorporating the fixes

of this section. In Algorithm 3.5.3, KMeansLearn is replaced by TrainScoredHMM,

ForwardBackward is replaced by ScoredForwardBackward, and L(SU
i |λB) is replaced by

z(SU
i |λ̂A).�

�

�

�

Algorithm 3.5.3: ModifiedClassifyObservationSequences(EA,EB,EU)

λA ← TrainScoredHMM(EA,N)

λB ← TrainScoredHMM(EB,N)

for SU
i ∈ E

U

do


z(SU

i |λ̂A)← ScoredForwardBackward(SU
i , λA)

z(SU
i |λ̂B)← ScoredForwardBackward(SU

i , λB)

labels[SU
i ]← argmaxX∈{A,B} z(SU

i |λ̂X)

return (labels)

3.6 Experimental Design

Three experiments are conducted to experimentally demonstrate the effectiveness of

problem fixes proposed in Section 3.5. All experiments in this research relate to Automated

Visual Surveillance (AVS) in overhead full motion video (FMV). The first experiment is a

pilot experiment using data generated by Gaussian Mixture Models (GMMs); the dataset

in the pilot experiment uses multi-observation continuous vectors designed to be easy to

separate. The second experiment uses the same dataset as the first; however, it applies

a blending procedure to characterize the MOCDHMM classifier’s response to errors in
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training data. The third experiment uses a simulation of an overhead FMV scene consisting

of soldiers in a combat environment walking from source locations to sink locations.

All experiments apply the standard MOCDHMM algorithm from Section 3.3 to arrive

at a baseline for performance. All experiments then apply the modified MOCDHMM

algorithm from Section 3.5 to allow relative increase in performance. Both experiments

are implemented using JAHMM [14], and open-source Java HMM package.

To standardize terminology, we use the following terms in both experiments:

observation, sequence, and sequence set. An observation O is the condition (expressed

in some numerical term) of one entity at one point in time (sampled at 1 Hz). A sequence

S is a series of observations representing the walk from source to sink of one entity. A

sequence set E is a group of sequences.

3.6.1 Unblended Pilot Experimental Design.

In order to generate agents which are easy to separate, Gaussian Mixture Models

(GMMs) are used. GMMs employ a series of Gaussian distributions. Each Gaussian

Distribution has a certain probability (its mixture) of producing the next observation. Three

Gaussian Mixture Models were used in this experiment: Small Variation Gaussian (SVG),

Wide Variation Gaussian (WVG), and Widely Separated Mixed Gaussian (WSMG). Table

3.1 gives the specific mixtures, means, and standard deviations of the various distributions

used in the pilot experiments.

The pilot experiment aims to approximate the complexity of the observations obtained

in tracked FMV. We use observation vectors of length two in order to allow for two variables

extracted from tracked FMV (such as position and speed). Under our construct, the two

values in each observation vector are independent of one another. SVG, WVG, and WSMG

are used in all combinations of each of the two variables in the observation vectors, yielding

nine agents labelled A through I. Table 3.2 defines the agent types. (Note that the two
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Table 3.1: GMM Definitions: the three building blocks of the agents in both pilot

experiments

Distribution Type Mixture Mean Standard Deviation

SVG
Gaussian 1 1.0 µs = 6 σs = 0.2

Gaussian 2 0

WVG
Gaussian 1 1.0 µw = 6 σw = 6

Gaussian 2 0

WSMG
Gaussian 1 0.5 µm1 = 2 σm = 1

Gaussian 2 0.5 µm2 = 10 σm = 1

variables in the observation vectors are arbitrary and correspond to no actual or simulated

data in FMV. The two variables are labelled Θ and S .)

Table 3.2: Names of the nine simulated agents for the pilot experiments

Var 2: S

WVG SVG WSMG

Var 1: Θ

WVG A B C

SVG D E F

WSMG G H I

In the pilot experiments, HMMs always have two hidden states. Accordingly, the

HMM can be fully qualified by Eqs. (3.31a) through (3.31d), in which A is the 2 × 2

state transition matrix, πi is the probability of beginning the process in state i, b is a vector

of distributions where bi is the observation emission distribution for state i, and k is the

dimensionality of the observation vector (k = 2 for the pilot experiments). The means in

state i are µiΘ and µiS for variables 1 and 2 respectively; the variances in state i are (σiΘ)2
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and (σiS )2 for variables 1 and 2 respectively. The covariance between variables 1 and 2 in

state i is Covi[Θ, S ].

λ = (π,A,b) (3.31a)

bi ∼ Nk(µi,Σi) (3.31b)

µi = [µiΘµiS ] (3.31c)

Σi =

 (σiΘ)2 Covi[Θ, S ]

Covi[Θ, S ] (σiS )2

 (3.31d)

We expect that the best way to model agents with no occurrences of WSMG

distributions is using one state. That is, the best model for the observations of agent D(i.e.

[SVG, WVG]) is as follows

b0 ∼ N2

[µsµw],

σ
2
s 0

0 σ2
w


 (3.32)

Here, b0 is the random vector of two observations (Θ and S ) for agent D. N2 denotes the

two dimensional multivariate Gaussian distribution. The HMM should model a process

which arrives in one state and stays there. In this case the A matrix should be

AD =

1 0

1 0


By contrast, agent F requires two multivariate Gaussians to model correctly:

b0 ∼N2

[µsµm1],

σ
2
s 0

0 σ2
m


 (3.33a)

b1 ∼N2

[µsµm2],

σ
2
s 0

0 σ2
m


 (3.33b)
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In this case, we expect the following A matrix since the mixture between the two Gaussians

is 0.5.

AF =

0.5 0.5

0.5 0.5


Note that under this construct, there is no effective way to model agent I with fewer than

four hidden states.

HMMs in the pilot experiments are trained with 1000 sequences of 50 2-D

observations each. The classifiers are tested and assigned accuracy ratings based on

their classification performance of 2000 sequences; that is, the sequence set of unknown

sequences consists of 1000 sequences from each class used to train the HMMs. Both pilot

experiments are pairwise experiments; the classifiers in the pilot experiments attempt to

classify only two agents at a time. To that end, the classifiers contain only two HMMs, one

HMM trained on each class to classify.

3.6.2 Blended Pilot Experimental Design.

The blended pilot experiment stresses the mathematical classifier in an attempt to find

out how it is most likely to fail. One common problem the classifier is likely to face on a

real battlefield is the input of mislabeled training sequences. That is, not all training data

may be correctly labelled by human analysts. Thus blending procedure is performed on

the pilot test datasets. In blending, a number of sequences within the training sequence

sets are replaced by sequences from a different agent. For example, we denote agent A

sequences of which 30% have been replaced by agent B sequences as the “AblendB30”

dataset. The “AblendB30” dataset was classified against the “BblendA30” dataset. In this

example, the 30% is termed blend density. Intuitively, classification problems with higher

blend densities are more difficult to classify since the training data provided to the classifier

is more confused. See Figure 3.3 for a visual depiction of the Blended Pilot Experiment.
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The Blended Pilot Experiment uses the same number of sequences and the same

sequence length as in the Unblended Pilot Experiment (Section 3.6.1). Each HMM is

trained on 1000 sequences. Each classifier contains two HMMs; the classifier is tested

against 2000 unblended sequences whose labels are unknown to the classifier.

      
      

      
      
           

Training Sequence 

Set AblendB20

      
      

      
      
      

Training Sequence 

Set BblendA20

A

A

A

A

B

B

B

B

B

A

Equal Weighted Accuracy

A Training 

Data

B Training 

Data

All A 

Validation 

Data

All B 

Validation 

DataHMM HMM

Classifier

Observation Sequence 

from simulated agent B

Observation Sequence 

from simulated agent A

Figure 3.3: Sequence mixed datasets used in Blended Pilot Experiment

We then characterize the results according to one of three profiles for error resistance:

Error Vulnerable, Linear Response, or Error Resistant. An Error Vulnerable classifier

would cause a rapid loss of accuracy at a small blend density (sequence mis-labeling). A

Linear Response classifier would experience about the same loss of classification accuracy

as blend density. An Error Resistant classifier would experience small decreases in

classifier accuracy given initial increases in blend density. See Figure 3.4 for a depiction of

the possible error responses.
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Figure 3.4: Error response profiles for characterization of error resistance in Blended Pilot

Experiment

We hypothesize that the MOCDHMM classifier will exhibit error resistance, as one

strength of traditional HMMs is appropriate response to noisy data [41].

3.6.3 Fryer Dataset Experimental Design.

A simulated overhead combat scenario containing moving pedestrians is used to

demonstrate the effectiveness of the modified MOCDHMMs. A dataset whose training

data is difficult to separate by track alone is ideal for this purpose. Thus the Fryer Dataset

[15] is adopted, which contains entities who act very similarly to one another. The Fryer

Dataset entities are recorded from the movements of artificially intelligent agents modeled

by the JACK Intelligent Agent Framework [17]. Five classes of artificially intelligent agents

are used: AWARE, CARELESS, SAFE, COMBAT, and STEALTH. The various behaviors

are defined in previous research [15] by the SimExec agent framework operating on the

Visual Battlespace 2 (VBS2) combat simulator. High-level features of the agent classes are

as follows:

• CARELESS: Does not engage enemy targets unless directly fired upon. Maintains

straight path toward goal otherwise
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• SAFE: Moves as per CARELESS, except will assume AWARE behavior when

encountering the enemy

• AWARE: Assumes moderate (as opposed to full) speed, using cover when available

• COMBAT: Will engage any detected enemy, will fire while moving, and may move

while prone

• STEALTH: Spends most time crawling, except will move quickly to cross open

terrain into greater concealment

The dataset is difficult to separate since entities behave similarly in the absence of

prominent terrain features and multiple enemy actors.

The Fryer dataset contains 1997 labelled tracks of each class of agent from its origin to

its destination: CARELESS, SAFE, AWARE, COMBAT, STEALTH. Each agent track is

sampled one time per second. The number of samples for each track varies because agents

take a different amount of time to reach their destinations. On average the agents take

50 seconds to reach their destinations and the tracks consist of 50 samples. Each sample

contains the time followed by the agent’s x-coordinate, y-coordinate, elevation, and facing

direction in degrees. Because real-world technologies for determining elevation and facing

direction in overhead FMV are less mature than those for determining position, only time,

x-position, and y-position are considered in this research.

For each agent, the 1997 labelled tracks of approximately 50 samples each are

preprocessed to 1997 sequences of approximately 50 2-D observations each. Thus, obtain

five sequence sets are obtained: ECARELESS, ESAFE, EAWARE, ECOMBAT, and ESTEALTH.

To test the accuracy of the MOCDHMM classifiers, we perform pairwise classifica-

tion. MOCDHMM classifiers perform classification of each pair of datasets. Thus, the five

datasets require 10 test cases to ensure all datasets are classified against all other datasets.

For each test case, a common machine learning methodology called cross validation is ap-
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plied to ensure training data is never used as testing data . Under q-fold cross validation,

the train-test cycle in each test case is performed q times; each cycle is called a fold. In each

fold a number of training sequences is withheld from training and used for testing instead.

In general, the number of sequences withheld is L
q , where L is the number of sequences in

the dataset. In this way, each sequence is used as testing data exactly once, and no sequence

is ever used for both training and testing in the same fold.

3.6.3.1 Preprocessing the Fryer dataset.

We design a model for analyzing the Fryer dataset that takes into account two features:

1) angular deviation Θ in degrees from average direction of movement, and 2) speed S .

Average Direction 

1

2

3

4

Source

Sink

Angular 

Deviation at 

Time 1

5

Figure 3.5: Illustration of the method for measuring angular movement versus average

direction of movement. Five time steps are shown. All dotted lines are parallel to the

average direction of movement.

Θ is obtained by observing the overall direction of the pedestrian from its source (the

point at which it appears) to its sink (the point at which it disappears) as shown in Figures

3.5 and 3.6. In any timestep the pedestrian proceeds exactly the overall direction, Θ is 0. In

any timestep the pedestrian heads to the left of the overall direction, Θ is negative. In any

timestep it heads right of the overall direction, Θ is positive. S is obtained by dividing the

distance moved over a timestep by the duration of the timestep (1 second).
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Figure 3.6: Illustration of the method for calculating Angular Deviation, Θ. Note that

movement left of average movement is defined as negative degrees. Right of average

movement is defined as positive degrees.

The two values Θ and S are arranged in a two-element vector Ot which represents

observation vector O at time t.
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IV. Results and Discussion

This chapter presents and analyzes the results of the experiments described in sections

3.6.1, 3.6.2, and 3.6.3, namely the pilot experiment and the Fryer dataset experiment. Two

Multi Observation Continuous Density Hidden Markov Model (MOCDHMM) methods

are evaluated: standard MOCDHMM and modified MOCDHMM. The modified method

incorporates the solutions to mathematical errors described in Section 3.5.

Section 4.1 of this chapter shows experimental cases of the mathematical errors that

arise when applying the standard MOCDHMM algorithm. Section 4.2 details the overall

results of the standard MOCDHMM algorithm. Section 4.3 gives the results of the modified

MOCDHMM algorithm and makes comparisons between the two algorithms’ results to

show improvement.

4.1 Experimental examples of errors arising from standard MOCDHMM algorithm

This section shows examples of the three errors described in Section 3.4. The

examples of this section are not the only occurrences of the described errors across all

experiments. This section is included to show that the errors of Section 3.4 arose in

experimentation and to help to illustrate what those errors looked like.

4.1.1 Example of error 1: badly scaled covariance matrix.

An example of a badly scaled covariance matrix during Segmental K Means Training

(Section 3.4.1) occurs in the pilot experiment (Section 3.6.1) during training for agent

HblendI2. The covariance matrix ΣError1 shown in Eq. (4.1) is obtained in early Segmental

K Means training iterations.

ΣError1 =

 0.316446 −0.035390

−0.035390 0.003958

 (4.1)
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The matrix determinant of ΣError1 is on the order of 10−17. Because this matrix is so badly

scaled, small changes in the way matrix implementation rounds the values caused large

changes in the inverted value or rendered it not invertible. Large changes in the inverted

value of an covariance matrix cause large changes in the log-likelihood calculated for

classification; such large changes can negatively impact classification accuracy. A non-

invertible matrix stops the training procedure and prevents a classification experiment.

4.1.2 Example of error 2: division by zero in alpha scaling.

This section demonstrates error 2, division by zero in alpha scaling. Division by zero

in alpha scaling is an uncommon problem for discrete density HMMs. It is unlikely that

some observation symbol will have zero probability of being produced in all of the hidden

states. However, for continuous-density HMMs, error 2 is not at all uncommon.

We demonstrate error 2 in two parts. First, we demonstrate an example in which

scaling is required in the Forward Backward algorithm (Section 3.3.4). Second, we show

a different example in which scaling causes a division by zero error. Both examples are

drawn from the pilot experiment described in Section 3.6.1.

Example showing that scaling is needed in the Forward Backward algorithm.

Table 4.1 demonstrates how fast the unscaled calculation of f (S|λ) can cause underflow

in a standard IEEE 754 machine using double precision. Table 4.1 shows the calculation

of the likelihood f (SD
1 |λH) of realizing the first sequence of agent D given HMM H. Note

that the calculation underflows by timestep six. In actuality the first sequence of the agent

D dataset is 50 timesteps long.

The scaling techniques given in Section 3.3.4 preclude this underflow, but cause the

division by zero error of the next paragraph.

Example showing scaling can produce division by zero errors. Let wt = [6.065 −

2.339]. The two-element vector wt is the t = 17 observation from SD
1 , the first sequence

of agent D data. Consider the likelihood L(SD
1 |λH) of having produced this observation
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Table 4.1: Table showing the unscaled forward variable matrix for calculation of αt(i). The

calculation shown here is for the likelihood f (SD
1 |λH) of the first agent D training sequence

given the HMM trained for agent H. Rows show timesteps and columns show states. Note

that the calculation underflows by timestep 7.

timestep(t)/state(i) 0 1

1 1.11636217484e-10 4.14935147103e-10

2 1.03581807032e-34 2.68516010555e-36

3 5.07636051352e-186 1.89071530281e-187

4 1.04801759845e-200 8.06208632366e-201

5 5.1847394146e-217 3.47436325055e-217

6 3.49735376633e-222 4.4810454662e-221

7 0.0 0.0

8 0.0 0.0
...

...
...

50 0.0 0.0

given HMM H. For reference, the trained HMM H is shown in Figure 4.1. To calculate the

likelihood, we need to compute the likelihoods b0(wt) and b1(wt) of realizing wt given that

the process is in hidden states 0 and 1 respectively.

The formula for the log-likelihood of the multivariate Gaussian is in Eqs. (4.2)

and (4.3), in which k = 2 is the dimensionality of the observation vectors, bi(wt) is the

likelihood of realizing observation wt at hidden state i; µi and Σi are the mean vector and

covariance matrix respectively for the PDF at hidden state i.
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State 0
Pi= 0.48

Multi-variate Gaussian distribution
Mean:         [ 9.995 5.999 ]
Covariance: [ 1.02 -0.002  ]
                  [ -0.002 0.04  ]

0.5

State 1
Pi= 0.52

Multi-variate Gaussian distribution
Mean:         [ 1.984 6.001 ]

Covariance: [ 0.999 -0.001  ]
                  [ -0.001 0.04  ]]

0.50.49

0.51

Figure 4.1: The HMM produced by K Means Learning for agent H.

ln b0(wt) = −
k
2

ln 2π −
1
2

ln |Σ0| −
1
2

(w − µ0)Σ−1
0 (w − µ0)T (4.2)

ln b1(wt) = −
k
2

ln 2π −
1
2

ln |Σ1| −
1
2

(w − µ1)Σ−1
0 (w − µ1)T (4.3)

Eqs. (4.2) and (4.3) permitted us to calculate the log-likelihood ln b0(wt) and ln b1(wt)

of observation wt, given in Eqs. (4.4) and (4.5). However, the Forward Backward

Algorithm uses likelihood not log-likelihood, which is a much smaller value.
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ln b0(wt) = −878.53 (4.4)

ln b1(wt) = −877.18 (4.5)

The likelihood values b0(wt) and b1(wt) significantly underflowed our standard IEEE 754

machine, whose smallest floating-point representation was 1× 10−499. Thus, the sum of the

intermediate forward variables for all hidden states
∑N

i=1 ωt(i) was calculated to be 0 and

the calculation of the scaling factor ct was undefined. In our experiment, an undefined ct

value caused not a number (nan) results for the log-likelihood L(S|λ) of a sequence given

an HMM. Such nan results caused entire sequence sets to be classified incorrectly.

4.1.3 Example of error 3: biased classifier.

This section shows an example of error 3 of Section 3.4.3, the biased classifier. Table

4.10, located in Section 4.3.3 illustrates the biased classifier problem in Section 3.4.3.

Table 4.10 shows a mean log-likelihood matrix; the mean log-likelihoods are shown for

the sequence sets EROW given the HMMs λCOLUMN. For more information on mean log-

likelihood see Eq. (4.6). Consider mean log-likelihoods for the SAFE HMM. The SAFE

HMM recognizes the SAFE sequence set far better than it does the CARELESS sequence

set because of the higher log-likelihood for the SAFE sequence set (-229 versus -270).

Likewise, the CARELESS HMM recognizes the CARELESS sequence set far better than

it does the SAFE sequence set (-99 versus -118). However, the classifier made up of the

CARELESS and SAFE HMMs is biased toward CARELESS since most SAFE sequences

will be classified CARELESS (-118 is much greater than -229). This leads to high accuracy

rates when classifying CARELESS sequences and low accuracies when classifying SAFE

sequences.
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4.2 Results of experiment with standard MOCDHMM algorithm

The results of experiments described in this section use the standard MOCDHMM

algorithm described in Section 3.3. The two experiments presented are the pilot experiment

and Fryer experiment described in Sections 3.6.1 and 3.6.3. The results in this section

provide a baseline against which to compare the results of the modified MOCDHMM

algorithm. This sections shows that the standard algorithm fails and produces erratic

behavior. Furthermore, this section define a method of quantifying how erratic the

performance of the algorithm is by defining a concept of a failed test case versus a

successful one.

4.2.1 Unblended pilot experiment results: Standard MOCDHMM.

The results of the unblended pilot experiment are in Table 4.2. In Table 4.2, one

entry represents the equal weighted accuracy (EWA) when the row agent sequence set

is classified against the column agent sequence set. In more technical terms, Table

4.2 gives the accuracy of the classifier ΛROW, COLUMN composed of HMMs λROW and

λCOLUMN when classifying sequence sets EROW and ECOLUMN. Table 4.2 shows that the

standard MOCDHMM algorithm properly separates agents described in Section 3.6.1.

Most accuracies are approximately 100%. The exceptions are experiments for D vs. H

and G vs. I, which are both approximately 50%. Both D vs. H and G vs. I contain cases in

which log-likelihoods evaluate to not a number(nan). Such nan results show that division

by zero (error 2) described in Section 3.4.2 may have occurred.

4.2.2 Blended pilot experiment results: Standard MOCDHMM.

This section gives the performance results of the blended pilot experiment under

the standard MOCDHMM. The section then gives a brief characterization of the error

resistance of standard MOCDHMMs in the blended pilot experiment. (The error resistance

does not change in modified MOCDHMMs.)
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Table 4.2: Results of unblended pilot experiment for standard MOCDHMM: EWA

accuracy

Sequence Set 2

A B C D E F G H I

A 1.0 0.985 1.0 0.9825 0.980 0.980 1.0 1.0

B 1.0 0.980 1.0 1.0 1.0 1.0 0.980

Se
qu

en
ce

Se
t1

C 1.0 0.980 1.0 1.0 1.0 1.0

D 1.0 1.0 1.0 0.54 1.0

E 0.985 1.0 1.0 1.0

F 1.0 1.0 1.0

G 1.0 0.50

H 1.0

I

4.2.2.1 Performance of blended pilot experiment: Standard MOCDHMM.

Recall the agent types, labeled A through I, which were defined in Table 3.2. Figure

4.2 shows a series of plots reporting the results for the blended pilot experiment under the

standard MOCDHMM. Figure 4.2 is arranged according to the agents to be classified.

For example, the intersection of the row “A” with the column “I” represents the test

cases in which the algorithm attempts to classify agent A sequences blended with agent

I sequences. The x-axis within each plot represents the blend density, described in Section

3.6.2 and illustrated in Figure 3.3. The y-axis within each plot represents the Equal

Weighted Accuracy (EWA) of the combined agent classification. According to this scheme,

1.0 represents perfect classification accuracy, 0.5 represents the classification accuracy

expected of random guessing, and 0.0 represents no correct classifications at all. Note

that the y-axis of each plot ranges from 0.5 to 1.0.
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Figure 4.2: Results of the blended pilot experiment under standard MOCDHMM algorithm.

Any blend density for which an HMM will not train due to matrix singularity is denoted by

a large dot.

In Figure 4.2, any blend density for which an HMM will not train correctly due to the

matrix conditioning problem described in Section 3.4.1 is represented by a large dot in the

plot. Furthermore, all sequences whose log-likelihood evaluates to not a number (nan) for

either HMM in a classifier are labeled “incorrectly classified”. In other words, the classifier

makes an incorrect classification for sequence S under classifier ΛX,Y = {λX, λY} anytime

either L(S|λX) or L(S|λY) compute to nan.
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We expect the classification accuracy to decrease as the blend density increases since

the training data presented to the classifier have more errors at higher blend densities. Note

that indeed the accuracy decreases as the blend density increases.

Note further that large dots denote several cases for which HMMs are not able to

be trained via Segmental K Means Learning due to the existence of a badly conditioned

covariance matrix somewhere along its training process. Because no valid classifier was

obtainable for those blend densities, no sequences were tested for that blend density, and

no accuracy was obtained. The trend line connects only blend densities for which valid

HMMs exist and thus does not indicate an accuracy for cases which have a large dot 1.

Moreover, note that several pairs of agents exhibited poor performance at low blend

densities (≤ 6): A vs. B, A vs. D, A vs. H, B vs. E, B vs. F, B vs. G, C vs. D, C

vs. F, D vs. E, D vs. H, E vs. I, and G vs. H, and G vs. I. This may seem a surprising

result since they are trained using the least confused training data. However, the division

by zero error described in Section 3.4.2 provides an explanation. Note that we expect

this error more commonly for cases in which sequences from widely different distributions

were classified. Division by zero in sequences with widely different distributions is more

common because the error occurs when one observation in either sequence evaluates to

near-zero likelihood for all hidden states in the HMM for the other sequences. If an HMM

has been trained on sequences that are extremely different from the test sequences, low

likelihoods are more common. Consider cases of poor performance seen in Figure 4.2; for

the classification of two notional sequence sets EX and EY , in least one sequence set EX

predominantly produced nan results against the HMM λY trained for the other sequence set

EY . Thus, nan results caused half of the cases to be judged “incorrect”, driving accuracies

1Note that if training data produced such a badly conditioned matrix in a live (operational) system, no
classifier could be trained for that data. The system would have no recourse but to raise an exception to a
user. Thus, we do not attempt test cases based on data that produces badly conditioned matrices; we annotate
such test cases with a large dot
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of 0.5. In rare cases, both EX and EY produced nan results against their opposite HMMs,

driving accuracies of 0.0.

Lastly, note that there are several experiments that exhibit return to accuracies of

0.5 erratically. For example, the test cases involving agent C and agent I demonstrate

performance that alternates between close to 1.0 (very good) and close to 0.5 (close to

random guessing). This poor performance is due to mathematical problems with the

algorithms described in Section 3.3 (cited from previous works in [41]). We are able to

determine that the source of poor classification is due to mathematical error because we

know that nan is returned as the log-likelihood in those cases. However, we were not able

to determine the cause of such errors, which is an area for future work (see Section 5.3.2).

We seek to characterize the performance of the standard MOCDHMM algorithm using

a single number to allow comparison with the modified MOCDHMM algorithm. One might

expect the best characteristic of performance is the average accuracy across all test cases.

However, obtaining average accuracy across trials is not possible because test cases whose

classifier training failed (large dots in Fig. 4.2) do not give an accuracy. Thus, to best

characterize the results of Figure 4.2, we define all test cases as either failures or successes.

Note that in Fig. 4.2, most test cases are either very close to perfect (> 0.95) or very close

to the performance of random guessing (≈ 0.50). Thus, the cutoff value r between failure

and success can be almost any value in the range 0.50 < r < 0.95 with little impact on the

number of successes or failures counted. As such, r = 0.75 is selected because it is half

way between random guessing and perfect accuracy. Results for the standard MOCDHMM

against the pilot dataset are summarized in Table 4.3.

4.2.2.2 Characterizing the error resistance of MOCDHMMs.

The pilot experiment whose results are described in Figures 4.2 and 4.3 demonstrates

that MOCDHMMs are highly resistant to incorrectly classified sequences in their training

data. They match the error resistant profile in Figure 3.4. In general, they do not exhibit
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Table 4.3: Summary of results for blended pilot experiment: Standard MOCDHMM

algorithm. Success is defined as accuracy ≥ 0.75.

Successes 746

Total tested cases 936

Success rate 0.797009

a loss of classification accuracy until high blend densities. This finding is consistent with

that of other HMMs; MOCDHMMs and traditional HMMs are robust to errors in training

data.

The degree to which MOCDHMMs are resistant to error-prone (blended) data is

notable. In most cases, blend densities of 40% or more still produce accuracies close to 1.0

(perfect). The decline in accuracy occurs rapidly, and only in the highest blend densities

(close to 50%).

4.2.3 Fryer dataset experiment results: standard MOCDHMM.

This section reports the results of the standard MOCDHMM algorithm in classifying

the Fryer dataset described in Section 3.6.3. Table 4.4 reports the accuracy of the classifier

ΛROW,COLUMN using two hidden states and the standard MOCDHMM algorithm. The rows

and columns in Table 4.4 both represent agent class names; each entry represents the

accuracy for sequence set EROW when classified using classifier ΛROW,COLUMN. For example,

the entry in the AWARE row, CARELESS column represents the overall accuracy in only

the AWARE dataset when classifying AWARE data against CARELESS data.

Results for HMMs of only two hidden states are reported for the standard

MOCDHMM algorithm. HMMs with greater than two hidden states failed to train properly

under standard MOCDHMM due to the badly conditioned covariance matrix problem

described in Section 3.4.1. The overall accuracy of the Fryer standard MOCDHMM

experiment is calculated by taking the mean of all of all values in Table 4.4. The mean
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accuracy of Table 4.4 is calculated as 0.59324. This mean accuracy is recorded in the

standard, two-state entry in Table 4.7; Table 4.7 is a comparison of standard and modified

MOCDHMM performance.

Note that Table 4.4 reveals some bias in the classifier. Most accuracy values above 0.5

on one side of the diagonal have corresponding values below 0.5 on the other side of the

diagonal. This indicates that the classifier is selecting one class dominantly. This biased

classifier effect is addressed mathematically in Sections 3.4.3 and 3.5.3 dealing with scored

evaluation.

Table 4.4: Accuracies for individual sequence sets: Fryer dataset experiment using standard

algorithm and two states. Rows represent the sequence sets. The classifier for each entry is

ΛROW,COLUMN.

HMM 2

AWARE CARELESS COMBAT SAFE STEALTH

Sequence

Set E

and

HMM 1

AWARE 0.7598 0.6537 0.6702 0.7853

CARELESS 0.4103 0.3722 0.4183 0.6924

COMBAT 0.5198 0.7629 0.7709 0.8174

SAFE 0.3445 0.8080 0.4065 0.8300

STEALTH 0.4209 0.6752 0.3478 0.3989

4.3 Results of experiments with modified MOCDHMM algorithm

This section will show that the modified MOCDHMM algorithm provides modest

but numerically quantifiable improvement over the standard MOCDHMM algorithm. The

experiments presented in this section were performed using the modified MOCDHMM

algorithm.
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4.3.1 Unblended pilot experiment results: Modified MOCDHMM.

Table 4.5 gives the results of the unblended pilot experiment using the modified

MOCDHMM algorithm. We expect low blend densities and widely separated distributions

to produce nan results due to error 2. Accordingly, we hypothesized that all cases of EWA

close to 50% in the standard MOCDHMM unblended pilot experiment (Figure 4.2) were

due to error 2 and that those cases would thus show 100% accuracy under the modified

MOCDHMM algorithm. Figure 4.5 shows that this is not entirely true. The accuracy for D

vs. H (54% accuracy with the standard MOCDHMM algorithm) was improved to 100% in

this experiment, but the accuracy for G vs. I (50% accuracy with the standard MOCDHMM

algorithm) was not improved. We can thus conclude that error 2 is not the cause of nan

results for G vs. I and that another error causes the problem. Discovering the source of

error for G vs. I is an area for future work.

Table 4.5: Results of unblended pilot experiment for modified MOCDHMM: EWA

accuracy

Sequence Set 2

A B C D E F G H I

A 1.0 0.985 1.0 0.9825 0.980 0.980 1.0 1.0

B 1.0 0.980 1.0 1.0 1.0 1.0 0.980

Se
qu

en
ce

Se
t1

C 1.0 0.980 1.0 1.0 1.0 1.0

D 1.0 1.0 1.0 1.0 1.0

E 0.985 1.0 1.0 1.0

F 1.0 1.0 1.0

G 1.0 0.50

H 1.0

I
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4.3.2 Blended pilot experiment results: Modified MOCDHMM.

Figure 4.3 shows the results of the blended pilot experiment using the modified

MOCDHMM algorithm. The results of the blended pilot experiment do not use the scored

evaluation fix described in Section 3.5.3 because the classifiers do not exhibit the biased

classifier problem (Section 3.4.3) that scored evaluation is intended to fix. The plots in

Figure 4.3 are read in the same way as those for the blended pilot experiment standard

algorithm shown in Figure 4.2; blend density is listed on the x-axis and accuracy is listed

on the y-axis. Note that unlike Figure 4.2 for the standard MOCDHMM, Figure 4.3 has

no large dots indicating cases of failed classifiers. This is because all classifiers trained

properly; each blend density within each pair of agents has a valid accuracy plotted. This

is opposed to the standard MOCDHMM in which 35 classifiers failed to train.

The continued erratic occurrence of poor (0.5) accuracy exhibited by the modified

MOCDHMM algorithm is an unexpected result. Note that in both Figures 4.2 and 4.3, test

cases in G vs. I, C vs. I, C vs. G, B vs. F, and D vs. H alternate between high accuracy

and low accuracy. We expected that fixing the division by zero error described at Section

3.4.2 would prevent the return of not a number (nan) results from the forward algorithm.

In turn, we expected that the erratic occurrences of poor performance would be precluded.

Instead, observe that while the modified MOCDHMM algorithm eliminates cases of poor

performance from low blend densities, it does not prevent poor performance in higher

blend densities. Of the 190 failures realized by the standard MOCDHMM algorithm, the

modified MOCDHMM algorithm corrects 42 and fails to correct 148. There are no cases of

success under the standard MOCDHMM algorithm that were failures under the modified

MOCDHMM algorithm. The failure cases under the modified MOCDHMM algorithm

are due to nan log-likelihoods. We have not been able to determine what caused the nan

log-likelihoods; such a determination is an area for future work (Section 5.3).
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Figure 4.3: Results of the blended pilot experiment using the modified MOCDHMM.

Table 4.6 summarizes the results in terms of separating test cases into successes

and failures as defined in Section 4.2.2. Note that the total success rate of the modified

algorithm reported in Table 4.6 is about 84% while the total success rate of the standard

algorithm, reported in Table 4.3 is about 79%, suggesting an approximate 5% improvement

using the modified method. In order to verify the 5% improvement is statistically

significant, the two-sample test for equality of proportions is used. The two-sample test

for equality of proportions determines the probability (p-value) that the difference in two

samples assumed to be from the same population occurred due to random chance. The

p-value for the standard MOCDHMM algorithm and modified MOCDHMM algorithm in
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this experiment was about 0.01. We thus conclude at 95% confidence that the modified

MOCDHMM algorithm produced an actual improvement in success rate. The increase in

the success rate owed to elimination of untrainable classifiers (error 1) and correction of

test cases at low blend densities (error 2).

Table 4.6: Summary of results from the blended pilot experiment using the modified

MOCDHMM. Success is defined as accuracy ≥ 0.75.

Successes 788

Total tested cases 936

Success rate 0.841880

4.3.3 Fryer dataset experiment results: modified MOCDHMM.

This section details the results of the Fryer experiment described in Section 3.6.3 using

two of the fixes for the modified MOCDHMM described in Section 3.5. The end of the

section contains a brief analysis to show statistically significant the performance difference

between the standard MOCDHMM algorithm and the modified MOCDHMM algorithm.

The experiment was conducted eight times as follows. Four cases used fix

1 (pseudoinverse in Segmental K Means Training) and fix 3 (scored evaluation) in

conjunction; these cases are referred to here as the modified-scored cases. Four cases

used fix 1 WITHOUT fix 3 (unscored evaluation); these cases are referred to here as

the modified-unscored cases. Both the modified-scored and modified-unscored cases were

tested with two, three, four, and five hidden states, resulting in eight total cases. (Although

we ran experiments with six and seven hidden state HMMs, we found that those HMMs

contained null states. HMMs of greater than five states thus produced poor accuracy and

their results are not given here.) Division by zero errors were not encountered in the Fryer

experiment; thus fix 2 has no effect on (and was not used in) the Fryer experiment.

66



The overall accuracies in Table 4.7 report the mean accuracy results for those eight

cases. Table 4.7 includes one result of the standard MOCDHMM algorithm incorporating

no fixes. The standard MOCDHMM result is included for the sake of comparison to the

modified MOCDHMM results. Note that the standard MOCDHMM cannot produce valid

classifiers for any number of hidden states greater than two in this experiment. Accordingly,

the corresponding entries in Table 4.7 are populated with “N/A”. Note also that the two-

state standard MOCDHMM experiment and the two-state modified-unscored MOCDHMM

experiment are in effect the same experiment and produce the exact same result for these

reasons: the pseudoinverse fix was not required for proper two-state training and the

division by zero error did not occur in the Fryer experiment. Thus, for two states, the

only difference between modified and unmodified MOCDHMM algorithms is scoring.

Table 4.7: Accuracies for the Fryer Experiment using the standard algorithm, the modified-

unscored algorithm, and the modified-scored algorithm. Note that the standard algorithm

would fail to train an HMM for greater than two hidden states due to the badly conditioned

covariance matrix problem.

Standard Modified-Unscored Modified-Scored

2 States 0.5932 0.5932 0.5209

3 States N/A 0.6278 0.5996

4 States N/A 0.6283 0.6124

5 States N/A 0.5882 0.6119

The entries in Table 4.7 are mean accuracies across each pairwise experiment

(AWARE vs. CARELESS, CARELESS vs. COMABT, etc...). To illustrate the meaning

of one entry in Table 4.7, we include Table 4.8. Table 4.8 is read exactly as Table 4.4;

e.g. the entry for AWARE and CARELESS corresponds to the accuracy for only AWARE
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sequences when the modified-unscored algorithm is used to classify AWARE sequences

versus CARELESS sequences. The average accuracy of Table 4.8 is recorded under the

entry for modified-unscored and five states in Table 4.7.

Table 4.8: Accuracies for individual sequence sets: Fryer dataset experiment using

modified-unscored algorithm and five states. Rows represent the sequence sets for which

accuracy is given when the classifier is composed of λROW and λCOLUMN .

HMM 2

AWARE CARELESS COMBAT SAFE STEALTH

Sequence

Set E

and

HMM 1

AWARE 0.6602 0.3844 0.9990 0.6441

CARELESS 0.7791 0.6253 0.9965 0.7841

COMBAT 0.7089 0.7199 0.9815 0.697

SAFE 0.0020 0.0115 0.0225 0.0030

STEALTH 0.6021 0.6997 0.4494 0.9935

Several important results are observable from Table 4.7. First, note that the accuracy

in every case is above random guessing of 50%. Above random results are particularly

important in this experiment since the amount of information is limited in the datasets

provided to the classifier. Above random performance suggests it is possible to make

inferences on the class of entities in full motion video using their tracks alone. Furthermore,

Table 4.7 demonstrates that modifying the original MOCDHMM algorithm to permit more

than two states does allow for a small increase in performance. Note that performance

increased for both the modified-scored and modified-unscored case from two to three states.

Note further that scoring does increase accuracy in the five state case.

Table 4.7 also contains a few unexpected results. In the modified-scored results note

a steady increase in classifier performance, but note the modified-unscored case reveals
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a drop in performance in the five state model. Furthermore, note that the overall best

performance was in an unscored case, that for four hidden states. In the two hidden

state case, the modified-scored algorithm performs significantly worse than the modified-

unscored algorithm (although it still outperforms random guessing). Yet we also find that

the scored algorithm outperforms the unscored in the five hidden state case.

To help explain why scoring helps most in the five state models, we include Tables

4.9 and 4.10. We term Tables 4.9 and 4.10 mean log-likelihood matrices, which list

the mean log-likelihood Lµ(EROW|λCOLUMN) of the sequence sets EROW represented by the

rows against HMMs λCOLUMN represented by the columns. For example, the entry in the

AWARE row and the CARELESS column represents the mean log-likelihood value when

the AWARE dataset is evaluated against the HMM trained on CARELESS data. Table 4.9

gives log-likelihoods for HMMs of two hidden states, and Table 4.10 gives log-likelihoods

for HMMs of five hidden states. Mathematically, we obtain the mean log-likelihood value

using Eq. (4.6), where Lµ is the mean log-likelihood which makes up the entries of Table

4.9, EROW is the sequence set of the class ROW, SROW
l is a particular sequence of class

ROW, LROW is the number of sequences in EROW, and λCOLUMN is the HMM trained on class

COLUMN training data.

Lµ(EROW|λCOLUMN) =

∑LROW

l=1 L(SROW
l |λCOLUMN)

LROW (4.6)

The ideal case for Tables 4.9 and 4.10 occurs when the highest value in every row

occurs on the diagonal. In this case, a sequence set is recognized by (per Section 3.4.3

definition) its own HMM better than any other HMM. Note that in Table 4.9 (2 state case),

the highest value is on the diagonal in all rows except for SAFE; in the SAFE row it is

very close (-133.04 is on the diagonal while -132.50 is the highest value in the row). We

do not expect that scoring will help much in this case since scoring only recenters the
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Table 4.9: Mean log-likelihood matrix: mean log likelihoods versus trained HMMs for two

hidden states. Rows represent sequence sets and columns represent HMMs.

HMM λ

AWARE CARELESS COMBAT SAFE STEALTH

Sequence

Set E

AWARE -132.45 -141.36 -136.41 -133.42 -141.66

CARELESS -157.61 -154.20 -156.58 -156.83 -160.46

COMBAT -152.92 -155.12 -149.78 -152.35 -153.92

SAFE -132.50 -140.54 -136.54 -133.04 -141.69

STEALTH -207.73 -207.08 -204.23 -207.43 -201.55

Table 4.10: Mean log-likelihood matrix: mean log likelihoods versus trained HMMs for

five hidden states. Rows represent sequence sets and columns represent HMMs.

HMM λ

AWARE CARELESS COMBAT SAFE STEALTH

Sequence

Set E

AWARE -94.14 -111.75 -96.91 -228.01 -97.28

CARELESS -119.94 -99.17 -101.43 -269.97 -124.31

COMBAT -107.36 -124.11 -101.27 -257.70 -109.02

SAFE -96.85 -118.85 -100.41 -229.17 -99.77

STEALTH -153.96 -206.52 -157.26 -348.94 -105.44

classification based on mean log-likelihood score. It may be that most classification errors

in the two-state experiment are due to mean log-likelihood scores being close together

rather than due to biased classifiers. However, adding hidden states to the HMMs provides

some log-likelihood separation.
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In the five-state experiment (Table 4.10) the difference between the diagonal values

and the nearest other values on the same rows is greater than in the two-state experiment

(Table 4.9). Having a diagonal value much greater than the other values in a row aids in

classification accuracy because there is more separation on which to classify. Moreover,

the five-state log-likelihoods are similar to the two-state log-likelihoods in that the value

on the diagonal is the highest in each row except for SAFE; having highest log-likelihood

values on the diagonal aids in classification accuracy because we can expect to classify

each sequence correctly on average.

By contrast to the two-state experiment, the five-state experiment (Table 4.10)

represents an experiment in which scored evaluation may help. The SAFE vs. SAFE

value (-229.17) in the 4th row of Table 4.10 is very low compared with the other values on

this row. We thus expect SAFE data to be consistently classified incorrectly as a different

class. Table 4.8 confirms the expectation of low SAFE accuracy.

In Table 4.8, accuracies for the five-state modified-unscored test are broken down

into those obtained for the individual sequence sets. Each entry represents a single

experiment in which sequence set EROW is classified against ECOLUMN using the classifier

ΛROW,COLUMN = {λROW, λCOLUMN}. The accuracy given is that for classifying only EROW.

(To find the corresponding accuracy for ECOLUMN, look on the opposite side of the diagonal

where the labels are reversed.) Note that across the row for SAFE, the accuracies are near

zero, whereas in the column for SAFE the accuracies are near perfect; this means that

sequences in ESAFE are almost always classified incorrectly. Low SAFE accuracy is due to

the low mean log-likelihoods Lµ(ESAFE|λ) given in Table 4.10.

However, that the SAFE HMM recognizes SAFE data as well as any other class makes

scoring effective for the five-state experiment. A class C is recognized by its own HMM

λC better than other classes are if the mean log-likelihood Lµ(EC |λC) is the highest for row

C. An HMM λC recognizes its own class C better than other HMMs do if the mean log-
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likelihood Lµ(EC |λC) is the highest for column C. Although SAFE data is recognized by

other HMMs better than λSAFE, SAFE HMMs recognize their own data almost as well as

all others (see Section 3.4.3 for definitions of recognition). Thus, observe that the SAFE

vs. SAFE value in Table 4.10 (-229.17) is almost equal to the highest value (-228.01) in

the SAFE column. Scoring then helps by scoring SAFE data close to zero on average and

other data less than zero on average. As a result, there is a classification accuracy increase

for the 5 state case from unscored to scored evaluation, as seen in Table 4.7.

The analysis above (and that in Chapter 5) assume that the differences of algorithm

accuracy in Table 4.7 do not occur by random chance. Thus, the analyses assume

differences in Table 4.7 are due to the effects of changing the algorithms. A statistical

analysis is now presented to show the differences in mean accuracy are in fact statistically

significant.

4.3.3.1 Remarks on statistical significance of modified MOCDHMM Fryer

dataset results.

The two-sample test for equality of proportions is applied to determine whether the

differences in mean accuracy shown in Table 4.7 are statistically significant, that is, that

differences in mean accuracy occur due to changes in the algorithm and not due to random

chance. The two sample test for equality of proportions is performed at 95% confidence on

each pair of mean accuracies in Table 4.7; the sample size used for the test was 9985 (1997

sequences per sequence set times five sequence sets).

The two-sample test for equality of proportions reports that all mean accuracies in

Table 4.7 are different from one another with four exceptions. Those exceptions are:

1. The standard MOCDHMM algorithm accuracy and the two-state modified-unscored

MOCDHMM algorithm accuracy are not different. Such is expected since those are

the same algorithm by two different names.
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2. The two-state modified-unscored MOCDHMM algorithm accuracy and the three-

state modified-scored MOCDHMM algorithm accuracy are not different. However,

intuition suggests that the algorithms do in fact produce different results for two

reasons: 1) there is a statistically significant difference between accuracy for two-

state and three-state modified-unscored, and 2) there is statistically significant

difference between accuracy for scored and unscored three-state modified.

3. There is no statistically significant difference among accuracy for the three-state or

four-state modified-scored MOCDHMM algorithm. However, the improvement in

accuracy for the modified-scored algorithms for the other numbers of states suggests

that increasing the number of hidden states in general increases mean log-likelihood

separation among the classes and thus increases scored classifier accuracy.

4. There is no statistically significant difference among accuracy for the two-state,

three-state, or four-state modified-unscored MOCDHMM algorithms. It may be that

these three algorithms do not in fact produce different performance from one another.

This result may support a conclusion that increasing the number of hidden states

increases mean log-likelihood difference among the classes but causes classifier

bias. Increased mean log-likelihood separation among the classes tends to increase

classifier accuracy while classifier bias (in an unscored algorithm) tends to decrease

classifier accuracy. As a result, increasing the number of hidden states would produce

negligible effect on accuracy for an unscored classifier.

4.3.3.2 Comparison of modified MOCDHMM algorithm to Mean Euclidean

Distance (MED) classification for the Fryer dataset.

This section gives a comparison of the classification accuracy results Fryer [15]

obtained to those obtained by the modified MOCDHMM algorithm. This section provides
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Table 4.11: Overall improvement of modified MOCDHMM algorithm over standard

MOCDHMM algorithm.

Fryer dataset experiment

Pilot experiment WITHOUT Scoring WITH SCORING

Improvement 5% 3.5% 2%

p-value 0.01 3.9E-7 0.006

Sample size 936 9985 9985

a brief overview and the results of the Fryer technique, and then presents a comparison of

the Fryer results to those of the modified MOCDHMM algorithm.

Fryer [15] designed a classifier which used K Means Clustering and Mean Euclidean

Distance (MED) to classify agents of the same five types classified in this thesis. To use

the MED classifier, Fryer preprocessed datasets into vectors of 48 elements. One such

48-vector was obtained for each agent to be classified. The 48-vector contained (among

other values) the number of eastward, southward, northward, and westward movements of

the agent; that is, the number of sampled positions over the agent’s walk that appeared

eastward (southward, etc.) of the last sampled position. Fryer used K Means Clustering

on training data to obtain a mean vector for each of the five agent types. Then, the MED

classifier measured the Euclidean distance from a novel sequence S to each of the five

mean vectors; the MED classifier classified S according to which mean vector produced

the lowest distance. Note that the MED classifier technique ignores the time-series aspect

of the data.

Fryer performed two experiments to examine the MED classifier. The first experiment

was a pairwise classification in which each sequence to be classified could be one of only

two possible agent types. The second experiment was a five-at-a-time classification in

which each sequence to be classified could be one of any of the five agent types.

74



When classifying according to the MED on all 48 elements of the vectors, pairwise

classification was near perfect. The only incorrect classifications occurred when classifying

CARELESS versus SAFE agents; nonetheless the CARELESS versus SAFE trial still

scored an 80% accuracy. The overall accuracy of the pairwise experiment was 98%.

The results of Fryer’s five-at-a-time experiment were less promising by comparison to

his pairwise experiment results. The five-at-a-time experiment obtained accuracies above

those expected of a randomly-guessing classifier. The overall accuracy of the five-at-a-

time experiment was 32%. The reason for the substantial drop from pairwise to five-at-

a-time classification is alluded to in Fryer’s thesis. Fryer states that the dataset studied

in the five-at-a-time experiment was “less biased toward specific feature space attributes

that were easily separable between classes” [15]. The dataset studied in the five-at-a-time

experiment was what we refer to as the Fryer dataset in this thesis. The details of why

the pairwise experiment dataset was so easily separable based on the 48-vector discussed

above are unclear, as is the meaning of the term biased in Fryer’s explanation.

The research of this thesis includes only a pairwise classification experiment. The

algorithm which produced the best classification results on the Fryer dataset was the

unscored-modified MOCDHMM algorithm, which obtained an accuracy of 63%. Accuracy

of 63% is far below that obtained by Fryer in his pairwise experiment. However,

such a difference does not indicate that MED classification is more appropriate than

MOCDHMMs for this domain. The Fryer pairwise results were obtained on a different

dataset than we used in our research, a dataset that was “biased” in some way to be easily

separable by the Fryer preprocessing technique [15]. No direct comparison between MED

classification and MOCDHMM classification is thus possible given available experimental

data. The research of this thesis did not obtain five-at-a-time classification results. Such is

an area for future work.
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V. Conclusions and Future Work

This research applied what we term the Multi Observation Continuous Density Hidden

Markov Model (MOCDHMM) to classifying entities in Automated Visual Surveillance

(AVS). We discovered fundamental mathematical errors in the existing MOCDHMM

theory in [41], introduced fixes to counter those errors, and tested those fixes using three

datasets.

This chapter offers our conclusions on the research of this thesis. First, the chapter

summarizes our main contributions and findings. Next, the chapter comments on the

advantages and limitations of the MOCDHMM vice simpler HMMs. Finally, the chapter

discusses areas for future work that may render MOCDHMMs more accessible to the

research community.

5.1 Summary of findings

This section summarizes the main contributions and findings of this research. This

section has two subsections. The first subsection gives our analytical contributions to the

application of Hidden Markov Models (HMMs) for classification. The second subsection

gives findings based upon the empirical results of Chapter 4.

5.1.1 Analytical contributions.

This section gives the analytical contributions of this research to HMMs and AVS.

This section contains methods introduced in this thesis which are novel to the field. The

contributions of this section are supported by mathematical derivation rather than by

experimental result. (Findings of experimental results are treated in in Section 5.1.2).

• The Moore Penrose pseudoinverse is applied (Section 3.5.1) to ensure HMM

training procedures are valid for Gaussian distributions with full (non-diagonalized)
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covariance matrices. Previous work ensured covariance matrices would invert by

diagonalizing them, thus losing potentially valuable covariance information.

• The Scaled Forward Backward algorithm is modified (modification in Section 3.5.2)

to prevent a division by zero error (error 2) when determining the likelihoodL(SA|λB)

of realizing sequenceSA from class A given an HMM λwhich was trained for another

class B. Error 2 occurs only in widely separated classes and is not discussed in any

literature we found.

• The concepts of HMM recognition are defined. We use recognition to mathematically

describe the biased classifier ΛAB which predominantly selects class A when it should

select class B (Section 3.5.3).

• Biased classifiers are analyzed by introducing mean log-likelihood matrices, whose

columns reveal vulnerability to bias.

5.1.2 Empirical findings.

This section gives the conclusions supported by the experimental results in Chapter 4.

Where applicable, it refers to the appropriate table or section to support the conclusion.

• The modified MOCDHMM algorithm produces statistically significant improvement

in classification accuracy for the pilot experiment, the Fryer dataset experiment

without scoring, and the Fryer dataset experiment with scoring. Table 4.11 gives

the improvement and the p-value probability that the improvement is due only to

sampling error when using the two-sample test for equality of proportions. The

low p-values permit us to conclude with 95% confidence that the improvement is

statistically significant and not due to sampling error alone.

• Increasing number of hidden states produces greater separation in mean log-

likelihoods (Tables 4.9 and 4.10). However, increasing number of hidden states
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may introduce the biased classifier problem (Section 3.5.3). Separation in mean

log-likelihoods tends to increase classifier performance while classifier bias tends

to decrease classifier performance for unscored MOCDHMM algorithms. Scoring

techniques in MOCDHMM algorithms offset some accuracy decrease due to

classifier bias; as a result, scored MOCDHMM algorithm accuracy increases as

number of hidden states increases to a point (Table 4.7).

• Improvement for the modified MOCDHMM over the standard MOCDHMM

demonstrates that fixes for error 1 and error 2 (Section 3.4) are effective in

classifying a dataset designed to be easy to separate. Of 190 failures under the

standard MOCDHMM algorithm, 42 were improved to successes under the modified

MOCDHMM algorithm.

• Above random performance in the Fryer experiment suggests it is possible to make

inferences on the class of entities in full motion video (FMV) using their tracks alone

(Table 4.7).

• Applying the Moore Penrose pseudoinverse (fix 1) may enable HMMs to be trained

with more hidden states than training methods for Gaussians given in literature [41]

permit.

• Occurrence of not a number(nan) results for the log-likelihood L(S|λ) in test cases

from the modified MOCDHMM blended pilot experiment (Table 4.6) shows that

there are errors in classifying by MOCDHMM besides those addressed in fix 1 and

fix 2 (Section 3.5).

5.2 Advantages and limitations of MOCDHMMs

MOCDHMMs enjoy several advantages over simpler HMMs. MOCDHMMs preserve

more information in a training dataset than do simpler HMMs common in present
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literature. Preserving information in a training dataset is important because any information

lost in preprocessing might be information vital to class separation. MOCDHMMs

preserve such information better than simpler HMMs in two ways. First, MOCDHMMs

require no quantization and no discretization unlike HMMs elsewhere in literature.

Second, MOCDHMMs (as we use them) preserve correlation among the observations

in an observation vector by permitting output Probability Density Functions (PDFs)

which contain full (non-diagonalized) covariance matrices. By contrast, most HMMs

which permit multiple observations and continuous vectors ignore correlation among the

observations (see Section 2.3.2).

However, despite the inherent power of MOCDHMMs, they do possess the

disadvantages of mathematical complexity and limited scalability. MOCDHMMs are

mathematically complex; they produce calculation errors or underflows in a variety of

exceptional cases. This thesis presented three failure modes to which MOCDHMMs

(but not usually other HMMs) are subject, and proposed fixes for each. However, that

this research was unable to diagnose the cause of all errors discovered implies the high

complexity involved in transitioning from simple HMMs to MOCDHMMs. Moreover,

many datasets will quantize in some meaningful way and do not exhibit covariance across

random variables in their observation vectors. For datasets that can be thus quantized,

increased mathematical complexity makes MOCDHMMs a poor choice. (Note that we

use the term mathematical complexity to distinguish from computational complexity.

MOCDHMMs do not require any steps in training or evaluation that are not required of

simple HMMs. Thus, algorithms using a MOCDHMM and a simple HMM complete in

like computational time.)

In addition to the disadvantage of mathematical complexity, MOCDHMMs possess

limitations in scalability to high dimension observation vectors. While MOCDHMMs

are able to model covariance among the observation vector variables, such modeling
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of covariance limits MOCDHMM ability to scale to large input vectors. To see why,

consider the principle of machine learning that the more free parameters are in a model,

the more training data is required to meaningfully fit them [23]. As the output vector

of a MOCDHMM grows, the number of terms in the MOCDHMM covariance matrices

grows faster; specifically, an output vector of k variables requires a covariance matrix

of k2 elements. This polynomial increase in free parameters causes an increase in the

amount of training data required as the observation vectors grow. That said, scaling to high

dimensional spaces in MOCDHMMs is manageable if researchers have a priori knowledge

that covariance is likely to exist only among certain variables. For example, if researchers

expect Cov[a, b] = 0 they can set the corresponding entries in the covariance matrix to 0

when initializing the Segmental K Means algorithm. Initialization to zero in this algorithm

constrains the value to remain zero throughout training [41].

5.3 Future work

This section details several opportunities for future work based upon this research.

Some opportunities are direct extensions of the work presented in this thesis which are

most likely to advance the knowledge of applying MOCDHMMs to classifying entities in

Automated Visual Surveillance (AVS) by entity track alone. Other opportunities would

advance peripheral goals or advance the knowledge of MOCDHMMs in general. We treat

opportunities for future work in order from those directly advancing MOCDHMMs for

AVS to those advancing MOCDHMM use in general.

Following is a bulleted list of opportunities for future work. One subsection for each

bullet gives additional details of the future work we recommend.

• Improve countermeasures for biased classifiers

• Discover other failure modes of MOCDHMMs

• Dataset selection
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• Improve distribution analysis for scoring Log-likelihood

• Automatically select MOCDHMM model via Akaike Information Criteria (AIC) or

Bayesian Information Criteria (BIC)

• Modify Baum Welch Re-estimation procedure to apply to MOCDHMMs

• Generalize experiments to permit five-at-a-time classification

5.3.1 Improve countermeasures for biased classifiers.

Table 4.7 shows that scored evaluation for five states underperformed unscored

evaluation for four states by a statistically significant margin. However, also note from

comparing Table 4.9 to Table 4.10 that increasing the number of hidden states in the

HMMs generally increased the log-likelihood separability of the classes, subject to the bias

problem for the SAFE HMM. We conclude that while increasing number of hidden states

is (to a point) helpful in class separation, such an increase in hidden states causes classifier

bias. Scored evaluation (as we present it) does combat classifier bias in the five state case.

However, scored classification causes problems if the diagonal values of the log-likelihood

matrices are not the highest in each column. Note that Lµ(SCOMBAT|λCOMBAT) is not highest

in the COMBAT column in the mean log-likelihood matrix in Table 4.10.

Future work may devise a method to combat biased classifiers which does not fail even

when log-likelihood matrix diagonal values are NOT the highest in their columns. That is,

future fixes for biased classifiers should help even when an HMM λA trained by sequence

set EA recognizes some sequence set EB better than sequence set EA.

5.3.2 Discovering other failure modes of MOCDHMMs.

Although the techniques presented in this thesis were effective in preventing errors in

several cases, another failure mode caused mathematical failures in the pilot experiment. A

priority for future work is to determine the cause of these errors.
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The results of the blended pilot experiment using the modified MOCDHMM algorithm

(Figure 4.3) reveal cases in which the classifier produces near-random performance even in

low blend densities. We have determined that these cases of low classification accuracy are

due to a numerical error.

However, we have not determined the cause of such numerical errors. We believe

the MOCDHMM algorithm in [41] does not account for some mathematical complexities

of MOCDHMM use in actual datasets. It is worthy to note that similar cases avoid the

nan error (compare results of agent C versus agent I in Figure 4.3). Neighboring cases

alternately produce near-100% accuracy and near-50% accuracy. That the algorithm works

in some similar cases but not in others suggests that a numerical error exists in the cases

of poor accuracy. The cause of the near-50% accuracy remains an open question for future

research.

5.3.3 Dataset selection.

The Fryer dataset described in Section 3.6.3 is used in this research in part because it

was a difficult dataset to model. The differences in pedestrian behavior from class to class

were subtle; the Fryer Dataset simulates a real-world application in that there is not much

difference in the track of various entities to be classified. However, the Fryer dataset fails to

demonstrate disparate behavior among the classes that the Visual Battlespace 2 simulator

and the JACK artificial intelligence framework [17] make possible.

Consider the descriptions of the agents in Section 3.6.3. SAFE agents behave exactly

like CARELESS agents except when encountering an enemy, at which time they behave

as AWARE. However, only one enemy is in play during the simulation that generated

the Fryer dataset. Having only one enemy thus provides less separation between SAFE

and CARELESS and thus less classification accuracy. AWARE agents are different from

CARELESS agents in that they use cover to move from source to goal; however, dataset

designers minimized terrain and cover features. CARELESS agents react to being directly
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fired upon (as opposed to merely encountering an enemy) but enemies in this simulation

are constrained to hold fire. As a result, AWARE agents and CARELESS agents often

perform just like one another, which provides less separability. Therefore, while the Fryer

dataset satisfied our requirement for a hard dataset to separate, it may have provided less

separability than would be available in a real-world AVS problem.

To continue meaningful research into classification of agents by use of tracks,

researchers should find better datasets. A dataset would be better to the degree that the

separation in its classes relies on features most likely to occur in a real world intelligence

analysis problem. An ideal dataset also have the following characteristics to permit

classification based upon track:

• Tracked: The dataset will have logs of actual entity position (x, y) at a consistent

sampling frequency

• Labeled: The dataset will contain an accepted ground truth as to which entities in it

belong to which class

• High aspect or geospatially corrected: Much publicly available video data is taken

from closed circuit TV cameras mounted low to the ground. In such a setup, targets

moving away from the camera become smaller and closer to the horizon rather than

registering a significant change in y position. Thus, even if tracked, the dataset might

contain (x, y) coordinates that do not correspond to actual entity movement. Instead,

the dataset should contain video taken from an aircraft or from a similarly high

aspect. Alternatively, a dataset should be preprocessed to make geospatial corrections

to low-aspect video

5.3.4 Improved distribution analysis for scoring log-likelihood.

The scored HMM log-likelihood method given in Section 3.5.3 is a method that

mirrors Z-score evaluation for Gaussian data. By dividing a log-likelihood’s distance from
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Figure 5.1: Histogram of distribution of log-likelihoods L(SAWARE|λAWARE) for AWARE

sequences SAWARE given trained 5-state AWARE HMM λAWARE. Note that the distribution

is not Gaussian.
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the mean by the standard deviation, it implies the number of standard deviations from

center is a good measure for how much of the distribution a particular log-likelihood is

greater than. However, the distribution of log-likelihoods for a training sequence set are

not necessarily Gaussian. To show an actual such distribution, we introduce Figure 5.1.

Figure 5.1 gives a histogram of one set of log-likelihoods L(SAWARE|λAWARE) for AWARE

sequences SAWARE given trained 5-state AWARE HMM λAWARE. The log-likelihoods of

Figure 5.1 are neither Gaussian nor symmetric.

A more precise measure of where a given log-likelihood falls within the distribution

may increase scored classifier accuracy. One possible approach would be to fit a

distribution f (L(S|λ)) to the one given in Figure 5.1 and use Cumulative Density Function

F(L(S|λ)) to determine what area of f (L(S|λ)) falls below the log-likelihood L(S|λ) for

each S to be classified. This may be a more appropriate score on which to classify S

than was z(S|λ) described in Section 3.5.3. Such an implementation is an area for future

research.

5.3.5 Automatic model selection based on AIC or BIC.

Experimentation alone is used in our research to determine the required number of

hidden states in our HMMs. However, automated means exist to determine from training

data the ideal number of hidden states. Both the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) are used to calculate the ideal number of model free

parameters supported by the training data. Various research has applied this technique,

such as that in [52]. However, our literature review has not found the application of AIC or

BIC to tracking-based overhead Automated Visual Surveillance (AVS); such an application

is an area for future work.

That this research required algorithm modification to generalize from simple HMM to

MOCDHMM suggests AIC and BIC will require similar modification. It is important to
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note that applying AIC and BIC to MOCDHMMs may not be a straightforward task even

though AIC and BIC solutions for simpler HMMs already exist.

5.3.6 Implement required mathematical changes in the Baum Welch Re-estimation

procedure.

Our early work in this research uncovered a variety of mathematical errors when we

attempted to train MOCDHMMs using Baum Welch (BW) Re-estimation, even though our

BW implementations for discrete inputs worked correctly. Because we discovered reliable

means for Segmental K Means Training before we addressed BW deficiencies, we focused

our efforts on Segmental K Means training alone. Finding solutions to problems with the

BW algorithm for MOCDHMMs is an area for future work.

5.3.7 Generalize experiments to permit five-at-a-time classification.

As discussed in Section 4.3.3.2, no experimental data exists to permit direct

comparison between Mean Euclidean Distance (MED) classification and MOCDHMM

classification. The reason for the lack of comparable data is twofold: 1) Fryer [15] (who

studied MED classification) did not perform pairwise classification on what we term the

Fryer dataset and 2) we do not perform five-at-a-time MOCDHMM classification on the

Fryer dataset.

In order to permit meaningful comparison between MED classification and MOCDHMM

classification, our MOCDHMM classifier should be applied to a five-at-a-time experiment.

Such a comparison might lend insight into whether a technique sensitive to the time-series

nature of the dataset (like MOCDHMMs) is significantly better than a technique which is

NOT sensitive to the time-series nature of the dataset (like MED).

86



Appendix A: Permission to Publish Proprietary Information

87



II 

Technology Service Corporation 
an employee-owned company 

55 Corporate Drive 3rd Floor, Trumbull, Connecticut 06611 • Phone: (203) 601-8300 • Fax: (203) 452-0260 • www.tsc.com 

October 24, 2011 

Matt Ross 
Air Force Institute of Technology 
Graduate School of Engineering 
2950 Hobson Way 
WPAFB, OH 45433 

Dear Matt: 

Ref: TSC-CT1 02-1031 

TSC is pleased that you wish to cite our SBIR Phase I Final Report on GMTI 
Exploitation Modeling: Deriving Behavior and Characteristics from Data Sets (AFRL-RI
RS-TR-2008-75) March 2008, Contract No. FA8750-07-C-0133. I understand that you 
will not reveal our detailed processing technique, by only wish to cite the benefits to 
warfighters that we claim in this report . If that is the case, then you have our permission 
to cite th is work and we wish you the best with your publication. 

Sincerely, 

~~ 
Allan Corbeil 
CT Operations Manager 

AC/mf 



November 30, 2011 

Major Matthew Ross 
2950 Hobson Way 
Bldg 641 
Wright Patterson AFB, OH 45433 

OMPANY 

SUBJECT: Permission to Cite "GMTI Forensics Analysis Tools" Technical Report 

This letter provides Major Matthew Ross permission to cite the below report in public 
academic literature. 

Mark Kozak, Bryce Roskamp and Dr. Peter Shea, "GMTI Forensics 
Analysis Tools Final Technical Report", AFRL Technical Report under 
SBIR Phase I, AF071-061, Government Contract: F A87 50-07 -C-0 100, 
March2008. 

Permission is granted to cite this paper regarding military capabilities the techniques 
would enable, so long as technical details of the methods are not revealed. 

Sincerely, 

Michael A. Krumme 
Executive Vice President 
Black River Systems Company, Inc. 

BLACK RIVER SYSTEMS COMPANY; I 62 GENESEE STREIT; UTICA, NY I 3502 (3 I 5) 732-7385 



Appendix B: Proofs

Proof that α̂t(i) =
∏T

t=1 ctαt(i):

Proof. The proof proceeds by induction. For t = 1 we have

α1(i) = πibi(O1) (B.1)

α̂1(i) = c1πibi(O1) = c1α1(i) =

 1∏
τ=1

cτ

αt(i) (B.2)

by equations 3.7 and 3.11 respectively. For t = 2 (base step) we have

α̂2(i) = c2ω2(i) (B.3)

= c2

N∑
j=1

α̂1( j)a jibi(Ot) (B.4)

= c2

N∑
j=1

c1α1( j)a jibi(Ot) (B.5)

= c1c2

N∑
j=1

α1( j)a jibi(Ot) (B.6)

=

 2∏
τ=1

cτ

α2(i) (B.7)

For t > 2 (inductive step), we assume the conclusion is valid for t and show it true for t + 1

as follows

α̂t+1(i) = ct+1ωt+1(i) (B.8)

= ct+1

N∑
j=1

α̂ta jibi(Ot) (B.9)

= ct+1

N∑
j=1

 t∏
τ=1

cτ

αt( j)a jibi(Ot) (B.10)

= ct+1

 t∏
τ=1

cτ

 N∑
j=1

αt( j)a jibi(Ot) (B.11)

=

 t+1∏
τ=1

cτ

αt+1(i) (B.12)
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Proof that
∑N

i=1 α̂t(i) = 1 for all time t:

Proof.
N∑

j=1

α̂t( j) =

N∑
j=1

ωt( j)∑N
k=1 ωt(k)

=

∑N
j=1 ωt( j)∑N
k=1 ωt(k)

= 1 (B.13)

�

Algrbraic manipulation to obtain L(S|λ) = −
∑T

t=1 ln ct from L(S|λ) = ln
[

1∏T
t=1 ct

]
:

Proof.

L(S|λ) = ln
[

1∏T
t=1 ct

]
(B.14)

= − ln

 T∏
t=1

ct

 (B.15)

= −

T∑
t=1

ln ct (B.16)

�
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Appendix C: Background on Automated Surveillance

In this appendix, we detail three topics relevant to Automated Visual Surveillance

(AVS) which are peripherally relevant to the research in this thesis: occlusion, behavior

based decomposition (BBD), and standards of method comparison. We cite papers relevant

to each topic. In some cases, we refer to material presented in Chapter 2 in order to show

how the material of this chapter relates.

C.1 Occlusion and occlusion reasoning

Object based decomposition (tracking) methods described in Section 2.1.3 are

susceptible to occlusion. Occlusion is the tendency of entities to hide one another from

the camera or to be blocked from view by an obstacle. Some researchers claim that

occlusion is such a significant problem that object based decomposition is infeasible for

some applications. Loy et al. [34], in a paper developing behavioral based methods,

declare that tracking methods are infeasible for “crowded wide-area scenes”. However,

Kozak et al. [29] and Corbeil [5] present results that support the utility of object based

decomposition in their work on Ground Moving Target Indicator (GMTI) data. The Kozak

et al. and Corbeil methods in fact perform better for crowded scenes than for sparse

scenes because the methods take advantage of crowded conditions to provide more data for

accurate normalcy models. Occlusion becomes less a problem since [29] and [5] treat the

aggregate case. Because not all methods leverage the aggregate case, many see decreased

performance from occlusion when applying object based decomposition. (Techniques in

[29] and [5] are proprietary and developed under contract to the U.S. government; thus, we

do not present their implementation details.) Two techniques for occlusion reasoning, the

process of contending with occlusion, are surveyed here: the Kalman filter and the temporal

texture template.
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The first technique for occlusion reasoning uses a Kalman filter [6] for reducing

noise in data. Kalman filters are a smoothing method used in signal analysis. Kalman

filters reduce random variation in received signals by considering two values: 1) the actual

received signal value and 2) a predicted signal value calculated by the filter. The selected

value for processing is that with the lower uncertainty.

A second technique for occlusion reasoning, temporal texture templates, is more

recently developed. Temporal texture templates [20] maintain a state matrix on each

tracked object. The matrix contains information on the foreground region of the entity

and the frequency with which the pixels around that entity appear in the foreground

of that object. Foreground region and frequency of change influence the next state of

the state matrix as it is updated by the tracker. The machine detects when two tracked

entities occlude, anticipating they will soon separate. When separation occurs, the present

foreground and frequency of change of the two entities are compared to previous values.

The closer matching images are then mapped to the tracked entity again. Stauffer et. al.

[45] apply temporal texture templates effectively. Nonetheless, the Stauffer et al. method

still performs less effectively as the number of occlusions increases.

C.2 Behavior based decomposition methods

In contrast to object based decomposition (tracking) methods described in Section

2.1.3, behavior based decomposition (BBD) methods do not analyze the behavior of the

entities by tracking them individually. Rather, BBD analyzes the changes of the scene

pixels in a region. BBD models behavior or reports anomalies in a particular region rather

than reporting the acts of a particular tracked entity as anomalous.

BBD has inherent advantages and disadvantages. Researchers apply the method to

avoid the occlusion problem discussed above [16, 34]. Because BBD does not rely on

statistical analysis of the entities, it produces acceptable results even when those entities

change shape (e.g. get closer to the camera) or disappear entirely. In addition, BBD remains
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computable even when predicting the behavior of a large number of objects since not all

objects are modeled independently [34]. To realize these advantages, however, designers

must provide for implementation issues specific to BBD: segmenting the video images and

feature extraction. We shall describe both implementation issues.

BBD method designers, by contrast to tracking method designers, must decide how to

segment video sequences appropriately into regions. Treating the sequences as one region

might cause a method to miss information; segmenting into too many smaller regions

introduces computability issues [34].

Feature extraction has more variables involved in BBD than in tracking. Almost

all tracking methods extract the x-position and y-position of all tracked entities for each

timestep. Instead, researchers applying BBD must decide what features in the larger video

sequence are to be extracted if x-position and y-position are not. Many BBD methods

[16, 34] are actually hybrid BBD/tracking methods which incorporate x-position and y-

position if available. Other BBD features of interest may be: optical flow [34], dimension

of entity bounding boxes [34], and variables based on Pixel Change History (PCH) [16].

In the Section C.2.1 we give more detail on feature extraction in BBD; in Section C.2.2 we

give more detail on PCH.

C.2.1 Feature Extraction.

While it is important to note that both object based and behavior based decomposition

perform some sort of feature extraction, the feature extraction methods vary more widely

in BBD. Feature extraction, in this case, answers the question “how should relevant data

be pulled from a video sequence if not by focusing on individual entities?” Two broad

categories exist. Some methods use a compromise approach in which groups of moving

pixels (“blobs”) are extracted. Some methods strictly analyze regions as a whole.

Decomposition into blobs is the most common method researchers use. Literature

does not offer a rigorous, consistent definition for a blob. Our definition is “groups of pixels
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that move together frequently enough that modeling them together provides the best chance

to find anomalous events in an image”. Often, this leads to the drawing of a bounding

shape (rectangle or ellipse) around the blob to approximate its size and shape. This blob is

commonly reduced to a feature vector containing information such as centroid (x,y), size

(width, height), filling ratio of foreground pixels within the bounding shape for the blob

(occupancy), moments representing statistical likelihood of the blob being one coherent

object, ratio of minor axis to major axis of the bounding shape, and general direction of

motion (x,y) [34] [53]. There are inherent challenges to using this method. Each such

variable will include noise if the BBD method cannot differentiate between two adjacent

objects moving at a similar velocity [16]. Noise can cause a group of traffic on the highway

to be identified as a single blob. Such a misidentification can raise false detections of

anomalous behavior when the “object” suddenly splits [34]. Furthermore, analyzing so

many blob variables can present computational issues since the pixels may be decomposed

into far more blobs than are useful for machine analysis [16].

Pruteanu-Malinici et al. [39] detail a different feature extraction that analyzes video

sequence regions as a whole. They claim superior performance using such a feature

extraction. Pruteanu-Malinici et al. refer to the many-variable blob analysis above as

independent component analysis. The Pruteanu-Malinici alternative, invariant subspace

analysis, assumes that there is some feature in any video sequence that is not moving or

changing. This invariant subspace is what Pruteanu-Malinici et al. avoid analyzing for

anomalous behavior. The feature subspace of interest can then be represented as a set of

orthogonal basis vectors, bt and a vector of pixel gray levels can be represented as x. Then

the invariant subspace is computed by:

sinv =

√√
d∑

t=1

< bt, x >2
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Results in [39] validate the effectiveness of ISA. ISA performed from 12% to 50%

better than independent component analysis in normal-events detection and abnormal-

events detection [28].

C.2.2 Reducing number of blobs considered: Pixel Change History.

Various computability problems confront the BBD models. As discussed above,

sometimes the feature extraction algorithms extract more blobs than are of interest, which

slows computation. Pixel Change History (PCH) presents one method of reducing the

number of irrelevant blobs extracted. One problem causing excessive blob generation is

motion from the background that does not give insight into the behavior of the entities in the

scene such as leaves waving in the wind. PCH addresses this problem by building a model

to determine over how much time the motion takes place. PCH then applies a heuristic

to separate events of significance. Short term changes are filtered from significance on

the assumption that they are constant background motion such as leaves. Medium term

changes are classified as new objects or major changes in already known objects. Long

term changes are classified as new objects or previously known objects which have left the

scene [53].

C.3 Comparing and Contrasting Approaches

Though few operationally-fielded AVS solutions exist, a wide variety have been

researched. The researched methods vary widely enough that comparison and contrast

is difficult. This section attempts to provide a framework for comparing AVS methods in

two ways. First, it discusses common metrics designed to evaluate performance. Second, it

describes graphical mathematical models, which are used by almost all proposed solutions.

C.3.1 Metrics.

Because the discipline of AVS is fairly new, the measures of success for experiments

in it are not standardized. Literature agrees that it is good to detect an anomaly and bad

to detect an anomaly where none exists. From basic statistics, the former is termed true
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positive and the latter false positive [30]. Notions of true positive and false negative have

led to the only widely used standards of success—-the receiver operating characteristic

(ROC) curve (see figure C.1) and the confusion matrix.

The ROC curve is a plot of true positive rate against false positive rate for a particular

solution. The higher the area under the ROC, the better the solution. However, ROC

curves require that solutions can be calibrated to be more or less sensitive (to vary the false

positive rate). A different measure of success, the confusion matrix, gives false positive,

true positive, false negative, and true negative rates [7].

Unfortunately, characterizing AVS method performance by true positive and false

positive alone ignores at least two points: 1) timeliness of alerts and 2) urgency of

anomalous events detected [7]. First, characterization by true positive and false positive

alone does not require the classifier to be timely in its output. For some applications, an

abnormal event that is not detected in a timely manner is as bad as an anomalous event that

is not detected at all. For example, a method that detects the placement of a bomb on a

subway station does no good after the bomb has gone off. Second, characterization by true

positive and false positive alone does not account for the fact that some abnormal events

may be more important than others [7]. For application in homeland security, a method

that detects the abnormal event of “littering” is not as effective as a method that detects the

abnormal event of “placing bomb”.

The CREDS [55] (Challenge for Real-Time Events Detection Solutions) method

evaluates anomaly detection for both timeliness and urgency. The CREDS challenge

publicly issued video clips with anomalous events and called for solutions to classify

them. (In one case, video clips involved security cameras on a subway station.) Solutions

received a point value based upon their ability to detect anomalies in the video clips.

Three failure modes caused point deduction: anticipated detection in which the classifier

reports an anomaly before it happens, delayed detection in which the classifier is late to
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Figure C.1: Sample ROC Curve

detect, and false negative in which the classifier misses the anomaly entirely. Positive point

awards for detection are proportional to how soon after the start of an event the detection

occurred. Moreover, test designers designated certain events more critical than others, with

correspondingly higher rewards and penalties for detect and miss. The CREDS evaluation

method holds promise; no other methods we encountered in literature test both timeliness

and urgency.

However, CREDS does have drawbacks. First, CREDS places a premium on the

detection of events within seconds of their occurring. Such a premium is applicable when

trying to save passengers who may have fallen on the tracks but not when detecting trouble

in the next few hours. Second, CREDS evaluates only detection of events and does not

demand a predictive element.
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C.3.2 Graphical structures.

The graphical structure is the part of an AVS algorithm that accepts whatever vectors

feature extraction collects; the graphical structure produces the model or prediction. A

variety of graphical structures exist and saw considerable evolution in AVS application

from 1990 to 2010. In this section, we survey applications of graphical structures other

than HMMs to AVS.

Gaussian Mixture Models (GMM) were among the first mathematical graphical

structure used (late 1990s and early 2000s). Today, they still provide a benchmark against

which other methods are tested. In 2000, Stauffer et al. [45] perform one of the latest

experiments in AVS using GMMs without any other graphical models.

Certain modifications to Hidden Markov Models (HMM) produce new graphical

structures. Gong [16] introduces the Multi-Linked HMM. Both Loy [33] and Oliver et

al. [37] discuss the Coupled HMM (CHMM). Pruteanu-Malinici [39] makes a change to

the HMM model to allow a theoretical infinite number of hidden states. Dynamic Bayesian

Networks (DBN) represent a further evolution to the HMM paradigm. DBNs offer promise

in very recent literature since their classification accuracy is on par with HMMs multiple

times more complex [34, 53]. Simplicity and computability enabled by DBNs may be a

key to analyzing wide area scenes and providing alerts in real time.

Statistical methods to determine what the best graphical model is for a given set of data

have arisen in recent AVS literature. These techniques specify the ideal model complexity

for a given set of data, and are not limited to any particular graphical structure. For example,

Xiang uses Bayesian Information Criterion (BICr) and Completed Likelihood Akaike’s

Information Criterion (CL-AIC) to estimate the ideal model and complexity (e.g. number

of states in an HMM) required [52].
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C.4 Conclusion

This appendix has surveyed several topics relevant to AVS. Material covered in this

section gives context to the research of this thesis.
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